收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2025, Vol. 48 ›› Issue (1): 153-167.doi: 10.12118/j.issn.1000-6060.2024.121 cstr: 32274.14.ALG2024121

• 区域发展 • 上一篇    下一篇

粮食产销平衡区耕地非粮化动态演变及分区管控——以陕西省为例

吴一帆1(), 邢培学2, 郑伟伟1(), 夏显力1, 张超正1   

  1. 1.西北农林科技大学经济管理学院,陕西 咸阳 712100
    2.上海交通大学环境科学与工程学院,上海 200240
  • 收稿日期:2024-02-27 修回日期:2024-04-30 出版日期:2025-01-25 发布日期:2025-01-21
  • 通讯作者: 郑伟伟(1992-),女,博士,副教授,主要从事耕地保护、生态安全及土地资源优化配置等方面的研究. E-mail: weiwei.zheng@nwafu.edu.cn
  • 作者简介:吴一帆(2000-),男,硕士研究生,主要从事耕地非粮化研究. E-mail: 13703406185@163.com
  • 基金资助:
    陕西省社会科学基金项目(2021R023);国家自然科学基金青年项目(42201291);教育部人文社会科学研究青年基金项目(21YJC630174)

Dynamic evolution and zoning control of cultivated land non-grain in grain production and marketing balance area: A case of Shaanxi Province

WU Yifan1(), XING Peixue2, ZHENG Weiwei1(), XIA Xianli1, ZHANG Chaozheng1   

  1. 1. College of Economics and Management, Northwest A & F University, Xianyang 712100, Shaanxi, China
    2. College of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
  • Received:2024-02-27 Revised:2024-04-30 Published:2025-01-25 Online:2025-01-21

摘要: 探究粮食产销平衡区耕地非粮化时空演变特征及驱动因素,以期为制定耕地非粮化差异化管控及长效治理提供参考。利用空间自相关模型、时空地理加权回归模型、K均值算法等方法探究2000—2020年陕西省耕地非粮化现象及其驱动因素时空演变规律。结果表明:(1) 陕西省耕地非粮化率由2000年的16.11%上升至2020年的27.87%,增幅达73.00%,耕地非粮化形势严峻。(2) 陕西省耕地非粮化空间上整体呈现“南北高-中部低”的格局,“高-高型集聚”中心由陕北关中交界处逐渐转移至陕南地区,“低-低型集聚”主要分布在关中地区,呈由中部向四周扩散趋势。(3) 耕地非粮化驱动因素影响程度及范围存在明显时空异质性,一产增加值对耕地非粮化驱动力呈上升趋势,人均耕地面积、人均机械劳动力、平均坡度和年降水量等因素对耕地非粮化驱动力呈下降趋势。(4) 陕西省耕地非粮化驱动类型以经济驱动型为主,主要分布于关中地区,促进粮农降本增收、减少乡村人口流失是管控重点;生产支持型主要分布于陕北地区,管控以改善种粮条件、促进农业经济发展为主;环境限制型主要分布于陕南地区,引导与管控结合是治理途径。

关键词: 耕地保护, 耕地非粮化, 粮食产销平衡区, 时空地理加权回归模型

Abstract:

Exploring the spatial and temporal evolution characteristics and driving factors of cultivated land non-grain in grain production and marketing balance areas is crucial for providing references for differentiated control measures and long-term management strategies. This study employs spatial autocorrelation models, spatio-temporal geographically weighted regression models, K-means algorithms, and other methods to investigate the spatio-temporal evolution of cultivated land non-grain and its driving factors in Shaanxi Province, China, from 2000 to 2020. The results reveal the following: (1) The non-grain rate of cultivated land in Shaanxi Province increased from 16.11% in 2000 to 27.87% in 2020, representing a 73.00% rise. (2) The spatial distribution of non-grain in the province followed a pattern of “high in the north-south and low in the center.” The center of “high-high agglomeration” shifted gradually from the junction of the Guanzhong region and the northern region to the southern region of Shaanxi Province. Meanwhile, the “low-low agglomeration” was primarily concentrated in the Guanzhong region, exhibiting a diffusion trend from the center to surrounding areas. (3) The influence and scope of driving factors for cultivated land non-grain display significant spatio-temporal heterogeneity. The added value of the primary industry showed an increasing influence on cultivated land non-grain, while factors such as per capita cultivated land area, per capita mechanical labor force, average land slope, and annual precipitation demonstrated a decreasing influence. (4) The non-grain driving type of cultivated land in Shaanxi Province is mainly economic-driven, which is mainly distributed in Guanzhong region. Promoting the cost reduction and income increase of grain farmers and reducing the loss of rural population are the key points of control strategies. The types of production support are mainly distributed in the northern region, and the control strategies are mainly to improve the grain planting conditions and promote the development of the agricultural economy. The environmental restriction types are mainly distributed in the southern region of Shaanxi Province, and the combination measure of policy guidance and control strategies is the governance mode.

Key words: cultivated land protection, non-grain of cultivated land, grain production and marketing balance area, spatio-temporal geographically weighted regression model