收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2024, Vol. 47 ›› Issue (5): 820-829.doi: 10.12118/j.issn.1000-6060.2023.496

• 气候与水文 • 上一篇    下一篇

塔里木河流域水-耕地-粮棉系统耦合关系及影响因素分析

卢泉1,2(), 高花彦2, 王鹏鹏2, 冯啸林3, 杨艳霞2()   

  1. 1.华中农业大学经济管理学院,湖北 武汉 430077
    2.塔里木大学经济与管理学院,新疆 阿拉尔 843300
    3.新疆科技学院经济学院,新疆 库尔勒 841000
  • 收稿日期:2023-09-11 修回日期:2023-11-21 出版日期:2024-05-25 发布日期:2024-05-30
  • 通讯作者: 杨艳霞(1999-),女,硕士研究生,主要从事水资源保护、农业节水补偿等方面的研究. E-mail: 17809971661@163.com
  • 作者简介:卢泉(1978-),男,教授,主要从事水资源保护、农业节水补偿等方面的研究. E-mail: luquan0122@163.com
  • 基金资助:
    国家社会科学基金一般项目(19BJY139);首批国家级新文科研究与实践项目(2021090093)

Coupling relationship and influencing factors of water-cropland-grain-cotton system in Tarim River Basin

LU Quan1,2(), GAO Huayan2, WANG Pengpeng2, FENG Xiaolin3, YANG Yanxia2()   

  1. 1. College of Economics and Management, Huazhong Agricultural University, Wuhan 430077, Hubei, China
    2. College of Economics and Management, Tarim University, Aral 843300, Xinjiang, China
    3. College of Economics, Xinjiang Institute of Science and Technology, Korla 841000, Xinjiang, China
  • Received:2023-09-11 Revised:2023-11-21 Published:2024-05-25 Online:2024-05-30

摘要:

作为典型的干旱区和生态脆弱区,塔里木河流域是我国粮食、棉花的重要生产基地。水资源、耕地资源与粮棉资源的良性协调发展成为流域可持续发展的关键。通过构建塔里木河流域水-耕地-粮棉系统,测算其发展指数,并以耦合协调度模型测量了系统的耦合程度,在此基础上利用Fractional Logit模型分析了水-耕地-粮棉系统协调发展的影响因素。结果表明:(1) 塔里木河流域各系统的发展指数呈现水系统>水-耕地-粮棉系统>耕地系统>粮棉系统。五地州中,巴音郭楞蒙古自治州各系统发展指数排名与流域一致,喀什地区和阿克苏地区在耕地和粮棉系统发展水平领先,水资源系统发展水平靠后,而克孜勒苏柯尔克孜自治州与和田地区则是水系统发展指数位居前列,耕地和粮棉系统发展较落后。(2) 流域内水-耕地-粮棉系统耦合协调度介于0.475~0.680之间,处于勉强协调与初级协调之间。五地州中,喀什地区最高,克孜勒苏柯尔克孜自治州最低。这一指标经过缓慢提升后在2017年后明显下降。五地州中,阿克苏地区下降最为明显。(3) 水库数量、一般公共预算支出及人口数量是影响水-耕地-粮棉系统协调发展状况的关键因素,三者每增加1个单位将分别引起耦合协调度1.0%、21.0%、35.6%的提升。

关键词: 水-耕地-粮棉, 发展指数, 耦合关系, 影响因素分析

Abstract:

In the arid and ecologically sensitive Tarim River Basin, a vital hub for grain and cotton production in China, the harmonious development of water, arable land, and agricultural resources is crucial for sustainable growth. This study constructs a water-cropland-grain-cotton system model for the basin, evaluates its development index, and assesses the system’s coupling coordination using a coupling coordination degree model. Furthermore, the Fractional Logit model was employed to identify factors influencing the system’s coordinated development. The findings reveal that: (1) The development indices indicate a hierarchy of water system>water-cropland-grain-cotton system>cropland system>grain-cotton system. Post-2013, the development index of the cropland system in Aksu and Kashgar Prefetures surged, surpassing those of the combined water-cropland-grain-cotton system and the individual water system. Changes in other areas were minimal. (2) The coordination level of the basin’s coupled system ranges from 0.475 to 0.680, indicating a transition from minimal to basic coordination. Kashgar exhibits the highest coordination, while Kizilsu Kirgiz Autonomous Prefecture the lowest. This index, after an initial gradual increase, experienced a notable decline post-2017, particularly in the Aksu Prefecture. (3) The number of reservoirs, general public budget expenditure, and population size emerge as critical factors influencing the system’s coordination. An increase of one unit in these variables corresponds to a rise in the coupling coordination degree by 1.0%, 21.0%, and 35.6%, respectively.

Key words: water-cropland-grain-cotton, development index, coupling relationship, influence factor analysis