[1] |
施雅风, 张祥松. 气候变化对西北干旱区地表水资源的影响和未来趋势[J]. 中国科学(B), 1995, 25(9): 968-977.
|
|
[Shi Yafeng, Zhang Xiangsong. Influence and future trends of climate variation on water resources in the arid area in the northern China[J]. Science in China (Series B), 1995, 25(9): 968-977.]
|
[2] |
周刚, 崔曼仪, 李哲, 等. 新疆春季融雪洪水危险性动态评价研究[J]. 干旱区研究, 2021, 38(4): 950-960.
|
|
[Zhou Gang, Cui Manyi, Li Zhe, et al. Dynamic evaluation of the risk of the spring snowmelt flood in Xinjiang[J]. Arid Zone Research, 2021, 38(4): 950-960.]
|
[3] |
陈仁升, 沈永平, 毛炜峄, 等. 西北干旱区融雪洪水灾害预报预警技术: 进展与展望[J]. 地球科学进展, 2021, 36(3): 233-244.
doi: 10.11867/j.issn.1001-8166.2021.025
|
|
[Chen Rensheng, Shen Yongping, Mao Weiyi, et al. Progress and issues on key technologies in forecasting of snowmelt flood disaster in arid areas, northwest China[J]. Advances in Earth Science, 2021, 36(3): 233-244.]
doi: 10.11867/j.issn.1001-8166.2021.025
|
[4] |
古力米热·哈那提, 海米旦·贺力力, 刘迁迁, 等. 西天山小流域动态融雪过程及其与气温的关系[J]. 干旱区研究, 2019, 36(4): 801-808.
|
|
[Hanati Gulimire, Helili Haimidan, Liu Qianqian, et al. Dynamic snowmelt process and its relationship with air temperature in a small watershed in the west Tianshan Mountains[J]. Arid Zone Research, 2019, 36(4): 801-808.]
|
[5] |
刘鑫, 赵鲁强, 刘娜, 等. 伊犁河流域春季融雪型洪水危险性评价与区划[J]. 气象科技进展, 2016, 6(6): 35-41.
|
|
[Liu Xin, Zhao Luqiang, Liu Na, et al. Risk evaluation of the spring snowmelt flood in Ili River Basin and its mapping[J]. Advances in Meteorological Science and Technology, 2016, 6(6): 35-41.]
|
[6] |
唐志光, 王建, 王欣, 等. 近15年天山地区积雪时空变化遥感研究[J]. 遥感技术与应用, 2017, 32(3): 556-563.
|
|
[Tang Zhiguang, Wang Jian, Wang Xin, et al. Spatiotemporal variation of snow cover in Tianshan Mountains based on MODIS[J]. Remote Sensing Technology and Application, 2017, 32(3): 556-563.]
|
[7] |
肖鹏峰, 冯学智, 谢顺平, 等. 新疆天山玛纳斯河流域高分辨率积雪遥感研究进展[J]. 南京大学学报(自然科学版), 2015, 51(5): 909-920.
|
|
[Xiao Pengfeng, Feng Xuezhi, Xie Shunping, et al. Research progresses of high-resolution remote sensing of snow in Manasi River Basin in Tianshan Mountains, Xinjiang Province[J]. Journal of Nanjing University (Natural Sciences Edition), 2015, 51(5): 909-920.]
|
[8] |
张博, 李雪梅, 秦启勇, 等. 中国天山积雪垂直分布异质性研究[J]. 干旱区地理, 2022, 45(3): 754-762.
|
|
[Zhang Bo, Li Xuemei, Qin Qiyong. Heterogeneity of the vertical distribution of snow cover in Chinese Tianshan Mountains[J]. Arid Land Geography, 2022, 45(3): 754-762.]
|
[9] |
Wang S, Zhou F, Russell H A J, et al. Estimating snow mass and peak river flows for the Mackenzie River Basin using GRACE satellite observations[J]. Remote Sensing, 2017, 256(9): 1-20.
|
[10] |
Steele C, Dialesandro J, James D, et al. Evaluating MODIS snow products for modelling snowmelt runoff: Case study of the Rio Grande headwaters[J]. International Journal of Applied Earth Observation and Geoinformation, 2017, 63: 234-243.
doi: 10.1016/j.jag.2017.08.007
|
[11] |
Qi J Y, Li S, Jamieson R, et al. Modifying SWAT with an energy balance module to simulate snowmelt for maritime regions[J]. Environmental Modelling & Software, 2017, 93: 146-160.
|
[12] |
陈智梁, 王娟, 李春红, 等. 基于MODIS反演雪深的融雪径流模拟[J]. 中国农村水利水电, 2021(10): 27-49.
|
|
[Chen Zhiliang, Wang Juan, Li Chunhong, et al. Simulation of snowmelt runoff based on retrieved snow depth using MODIS data[J]. China Rural Water and Hydropower, 2021(10): 27-49.]
|
[13] |
Pangali Sharma T P, Zhang J, Khanal N R, et al. Assimilation of snowmelt runoff model (SRM) using satellite remote sensing data in Budhi Gandaki River Basin, Nepal[J]. Remote Sensing, 2020, 1951(12): 1-21.
|
[14] |
Nagler T, Rott H, Malcher P, et al. Assimilation of meteorological and remote sensing data for snowmelt runoff forecasting[J]. Remote Sensing of Environment, 2008, 112: 2408-2420.
|
[15] |
郝建盛, 张飞云, 黄法融, 等. 新疆伊犁地区季节冻土沿海拔的分布规律及其影响因素[J]. 冰川冻土, 2019, 41(2): 1-8.
|
|
[Hao Jiansheng, Zhang Feiyun, Huang Farong, et al. Altitudinal distribution pattern of seasonally frozen ground and its influencing factors in Ili[J]. Journal of Glaciology and Geocryology, 2019, 41(2): 1-8.]
|
[16] |
Zheng D H, Velde R V, Su Z B, et al. Impact of soil freeze-thaw mechanism on the runoff dynamics of two Tibetan Rivers[J]. Journal of Hydrology, 2018, 563: 382-394.
doi: 10.1016/j.jhydrol.2018.06.024
|
[17] |
魏光辉, 向怡衡, 陈杰, 等. 塔里木河流域积雪时空变化及融雪径流模拟[J]. 中国农村水利水电, 2020(4): 49-60.
|
|
[Wei Guanghui, Xiang Yiheng, Chen Jie, et al. The spatial and temporal variations of snow coverage in Tarim River Basin and its snowmelt runoff simulation[J]. China Rural Water and Hydropower, 2020(4): 49-60.]
|
[18] |
古力米热·哈那提, 张音, 关东海, 等. 生态输水条件下塔里木河下游断面尺度地下水流数值模拟[J]. 水科学进展, 2020, 31(1): 61-70.
|
|
[Hanati Gulimire, Zhang Yin, Guan Donghai, et al. Numerical simulation of groundwater flow at cross-section scale in the lower reaches of Tarim River under the condition of ecological water conveyance[J]. Advances in Water Science, 2020, 31(1): 61-70.]
|
[19] |
杨梅学, 姚檀栋, 丁永建, 等. 藏北高原D110点不同季节土壤温度的日变化特征[J]. 地理科学, 1999, 19(6): 570-574.
doi: 10.13249/j.cnki.sgs.1999.06.570
|
|
[Yang Meixue, Yao Tandong, Ding Yongjian, et al. The daily variation of the soil temperature in different seasons at site D110 in the northern part of Xizang Plateau[J]. Scientia Geographica Sinica, 1999, 19(6): 570-574.]
doi: 10.13249/j.cnki.sgs.1999.06.570
|