干旱区地理 ›› 2015, Vol. 38 ›› Issue (2): 327-333.
吴晓英1,王翠云2
WU Xiao-ying1,WANG Cui-yun2
摘要: 针对遥感影像混合像元光谱复杂,其非线性特征,传统LSMM分解模型难以进行有效的混合像元分解的不足。通过基于SVR的二端元混合像元分解的研究,从真实遥感影像上获取典型的植被、非植被光谱信息,构造二端元混合光谱库,进行SVR模型的混合像元分解。当样本量为6%时,交叉验证获得最佳模型参数(C=1024.0和g=4.0),进一步对全部混合像元进行混合像元分解。实验结果表明:SVR分解结果RMSE为5.95,R2为0.958,优于LSMM方法(RMSE=7.71,R2=0.932),且在各个不同真值丰度下具有更好的稳定性,证明该方法对于非线性混合光谱具有很好的学习和推广能力。此外,该方法的精度不随训练样本量的增加呈明显变化,体现出SVR在有限样本情况下能够保证高效率的训练能力。
中图分类号:
TP753