收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2014, Vol. 37 ›› Issue (6): 1240-1247.

• 地球信息科学 • 上一篇    下一篇

基于多源空间信息的缺资料地区地表日均大气温度空间分布数据获取研究

蔡明勇1,2,杨胜天1,曾红娟3,王志伟1,董国涛4   

  1. 1 北京师范大学地理学与遥感科学学院, 遥感科学国家重点实验室, 环境遥感与数字城市北京市重点实验室, 北京 100875;
    2 环境保护部卫星环境应用中心, 北京 100094; 3 长江水利委员会水土保持监测中心站, 湖北 武汉 430000;
    4 黄河水利委员会黄河水利科学研究院, 河南 郑州 450003
  • 收稿日期:2014-01-18 修回日期:2014-03-02 出版日期:2014-11-25
  • 通讯作者: 杨胜天 (1965-) , 男, 博士, 教授, 主要从事水文水资源遥感、 环境遥感和地理信息系统研究. Email: yangshengtian@bnu.edu.cn
  • 作者简介:蔡明勇 (1986-) , 男, 博士研究生, 主要从事水文水资源遥感、 生态水文建模与国际河流研究. Email: caimingyong@126.com
  • 基金资助:

     国家自然科学基金面上项目 (41271414) ; 中央高校基本科研业务费专项资金, 中央级公益性科研院所基本科研业务费专项资
    金 (HKY-JBYW-2013-22)

Muti-source spatial data based on daily average temperature simulation in data sparse regions

CAI Ming-yong1,2,YANG Sheng-tian1,ZENG Hong-juan3,WANG Zhi-wei1,DONG Guo-tao4   

  1. 1 School of Geography, State Key Laboratory of Remote Sensing Science, Key Laboratory for Remote Sensing of Environment and Digital Cities,
    Beijing Normal University, Beijing 100875, China; 2 Satellite Environment Center of MEP, Beijing 100094, China;
    3 Changjiang Soil and Water Conservation Monitoring Center, Changjiang Water Resources Commission, Wuhan 430010, Hubei, China;
    4 Yellow River Institute of Hydraulic Research, Yellow River Conservancy Commission, Zhengzhou 450003, Henan, China
  • Received:2014-01-18 Revised:2014-03-02 Online:2014-11-25

摘要: 地表大气温度是区域水循环研究与模型模拟中的关键因子, 其日尺度的空间分布信息是众多生态、 水文模型的重要输入。对于缺资料地区, 尤其是在地形复杂地区, 地表大气温度空间分布数据往往难以获得。基于多源空间信息, 首先利用KLEMEN法反演得到研究区卫星过境时刻瞬时地表气温空间分布信息, 然后通过建立的时间尺度转化方程实现研究区日均气温空间分布数据的获取。结果表明: 研究中所提取的瞬时气温数据精度较高, RMSE 为2.33℃, R2约为0.78; 所建立的时间尺度转化方程可信度高, R2约为0.98, RMSE 约为2 ℃; 在不依赖于地面观测数据的条件下, 研究所提取的日均气温数据总体精度 R2为0.90,RMSE为4.63 ℃, 且高温部分模拟精度高于低温部分。研究方法具有很好的可移植性, 可应用于其他缺资料地区。

关键词: 大气温度, 多源空间信息, 缺资料, 尺度转化

Abstract:  The spatial distribution of the daily average surface air temperature is vital for many hydro-ecological applications. The air temperature usually recorded at fixed-point stations provides little distribution information, and easily suffers from the scarce amount and uneven distribution of the stations in the data sparse regions. In this study,a method based on multi-source spatial data was developed to decrease the dependence on the conventional stations
observations in the daily average surface air temperature estimation, especially for data sparse regions. The method consists of two parts: step1, instantaneous surface air temperature when the satellite(Terra)passed by was retrieved using the Klemen method on the basis of Moderate Resolution Imaging Spectroradiometer(MODIS)products together with Shuttle Radar Topography Mission(STRM)products; step2, the instantaneous data from step1 was transformed to daily mean value using time scale transformation equations built up using the NCEP/NCAR re-analysis temperature data. The instantaneous surface air temperature simulations were evaluated against in situ measurement from a field test site(from August 2009 to September 2009, at Ahyz) , and the derived daily average surface air temperature was validated using observations from Zhaosu station(2006-2012) . The results indicate as follows: (1)the derived instantaneous surface air temperature using Klemen method on the basis of muti-source spatial data show
good consistence with the field measurements, the root mean square error (RMSE) of the simulations is 2.33℃ and the R2 between the derived and observed values is 0.78; (2)the R2 and RMSE of the statistical equations built up for surface air temperature time scale transformation in this study is 0.98 and about 2.00 ℃ respectively,demonstrating the validity and effectiveness of this transformation method; (3)the overall R2 and RMSE of the sim-
ulated daily mean surface air temperature is 0.90 and 4.63 ℃, and the simulation has a higher accuracy at high temperatures(above 0 ℃)compared with the simulations at low temperatures(below 0 ℃) , which may result from the characteristic of the Klemen method. More work could be done to improve the simulation accuracy at low temperatures(below 0 ℃)to achieve better overall accuracy, and the re-calibration of the coefficients in Klemen method
and the adjustment of the simulation at low temperatures(below 0 ℃)from Klemen method are possible ways. The method developed in this study is designed for the spatial-temporal distribution estimation of the daily average surface air temperature, and it is useful for the reason that the spatial-temporal distribution of surface air temperature is significant in various hydrological and ecological modeling or applications. This method benefits from its independence from the station observations, and is alternative for large area daily average temperature simulation, especially data sparse regions.

Key words: air temperature, muti-source spatial data, data sparse region, time scale transformation

中图分类号: 

  • TP79