收藏设为首页 广告服务联系我们在线留言
  • 2025年7月23日 星期三

干旱区地理 ›› 2025, Vol. 48 ›› Issue (5): 801-811.doi: 10.12118/j.issn.1000-6060.2024.377 cstr: 32274.14.ALG2024377

• 生物与土壤 • 上一篇    下一篇

水氮耦合对河西灌区滴灌西瓜NH3和N2O排放的影响

薛亮1,2(), 马忠明1,2(), 赵安宇3, 罗双龙1,2, 薛莲4, Muhammad Ali RAZA1   

  1. 1.甘肃省农业科学院土壤肥料与节水农业研究所,甘肃 兰州 730070
    2.国家农业环境张掖观测实验站,甘肃 兰州 730070
    3.甘肃省农业科学院张掖节水农业试验站,甘肃 张掖 734000
    4.甘肃省兰州市农业科技研究推广中心,甘肃 兰州 730010
  • 收稿日期:2024-06-17 修回日期:2024-08-21 出版日期:2025-05-25 发布日期:2025-05-13
  • 通讯作者: 马忠明(1963-),男,博士,研究员,主要从事节水农业研究. E-mail: mazhming@163.com
  • 作者简介:薛亮(1982-),男,硕士,副研究员,主要从事节水农业研究. E-mail: xuel_3521@163.com
  • 基金资助:
    国家现代农业产业技术体系建设专项(CARS-25);甘肃省现代农业科技支撑体系区域创新中心重点科技项目(2020GAAS02)

Effects of water-nitrogen coupling on NH3 and N2O emissions from drip-irrigated watermelon in the Hexi irrigation area

XUE Liang1,2(), MA Zhongming1,2(), ZHAO Anyu3, LUO Shuanglong1,2, XUE Lian4, Muhammad Ali RAZA1   

  1. 1. Institute of Soil, Fertilizer and Water-Saving Agriculture, Gansu Academy of Agricultural Science, Lanzhou 730070, Gansu, China
    2. National Agricultural Experimental Station for Agricultural Enviroment, Zhangye, Lanzhou 730070, Gansu, China
    3. Zhangye Water-Saving Agricultural Experimental Station, Gansu Academy of Agricultural Sciences, Zhangye 734000, Gansu, China
    4. Lanzhou Agricultural Science and Technology Research and Promotion Center, Lanzhou 730010, Gansu, China
  • Received:2024-06-17 Revised:2024-08-21 Published:2025-05-25 Online:2025-05-13

摘要: NH3和N2O排放是氮素气态损失的主要途径,研究膜下滴灌条件下不同水氮供应量对氮素气态损失的影响对于河西灌区西瓜生产中水氮管理方案的制定具有重要意义。试验采用裂区设计,主处理按田间持水量的80%(I80)、65%(I65)和50%(I50)设3个灌水下限,灌水上限设为田间持水量的95%,副处理设0(N0)、100 kg·hm-2(N100)、200 kg·hm-2(N200)和300 kg·hm-2(N300)4个施氮水平。试验采用通气法和静态箱-气相色谱法,分析了不同处理下土壤NH3和N2O排放动态变化以及西瓜产量和品质。结果表明:(1) 土壤氮素气态排放受水氮共同影响,NH3、N2O排放在施用基肥后1~2 d达到高峰,持续5~7 d,累积排放量在苗期最大,分别占全生育期的33.33%和47.22%;全生育期NH3、N2O累积排放量分别为3.05~15.39 kg∙hm-2和0.51~2.00 kg·hm-2。(2) 提高水氮供应量均会促使NH3、N2O排放,氮素的作用大于灌水,I80条件下增施氮肥,NH3、N2O累积排放量分别增加了63.86%~285.48%和120.41%~308.82%。(3) 处理I65N200的氮素利用率达到32.62%,显著高于处理I80N300,产量和可溶性固形物含量分别为70159 kg∙hm-2和11.39%,与处理I80N300差异不显著。综合考虑产量、品质和氮素利用率,在河西灌区西瓜膜下滴灌种植中,将土壤含水量控制在田间最大持水量的65%~95%之间,施氮量优化至200 kg·hm-2时,能够保持较高的产量和品质,并有利于控制NH3和N2O排放。

关键词: 西瓜, 滴灌, 水氮耦合, NH3排放, N2O排放

Abstract:

NH3 and N2O emissions constitute the primary pathways of gaseous loss of nitrogen. Investigating the effects of differential water and nitrogen application rates under plastic-mulched drip irrigation on gaseous nitrogen losses is crucial for developing scientifically informed water-fertilizer management strategies in watermelon production systems within the Hexi irrigation area in Gansu Province of China. Therefore, in this two-year field study, the experiment adopted a split-plot design, with main plots comprising three irrigation thresholds set at 80% (I80), 65% (I65), and 50% (I50) of field capacity, while maintaining a uniform upper irrigation limit at 95% of field capacity. Subplot treatments consisted of four nitrogen application rates: 0 kg·hm-2 (N0), 100 kg·hm-2 (N100), 200 kg·hm-2 (N200), and 300 kg·hm-2 (N300), on watermelon production under drip irrigation with a plastic mulch system. The experiment used aeration and static chamber-gas chromatography methods, the study analyzed soil NH3 and N2O emission dynamics, watermelon yield, and quality across treatments. The results showed that: (1) Soil nitrogen gas emissions are jointly affected by water and nitrogen. NH3 and N2O emissions reached their peaks 1-2 days after the application of base fertilizer and lasted for 5-7 days. The cumulative emissions were the highest in the seedling stage, accounting for 33.33% and 47.22% of the total growth period, respectively. The cumulative emissions of NH3 and N2O throughout the growth period were 3.05-15.39 kg·hm-2 and 0.51-2.00 kg·hm-2, respectively. (2) Increasing water and nitrogen supply rates will promote NH3 and N2O emissions. The effect of nitrogen is greater than that of irrigation. Under I80 conditions, the cumulative emissions of NH3 and N2O increased by 63.86%-285.48% and 120.41%-308.82%, respectively, when more nitrogen fertilizer was applied. (3) The nitrogen utilization rate of treatment I65N200 reached 32.62%, which was significantly higher than that of treatment I80N300. The yield and soluble solids content were 70159 kg·hm-2 and 11.39%, respectively, which were not significantly different from treatment I80N300. Considering yield, quality, and nitrogen utilization rate comprehensively, when the soil moisture content is controlled between 65% and 95% of the maximum field capacity in watermelon subsurface drip irrigation and the nitrogen application level is optimized to 200 kg·hm-2, high yield and quality can be maintained in watermelon systems within the Hexi irrigation area. This plastic-mulched drip irrigation strategy ensures yield-quality preservation while effectively mitigating NH3 and N2O emissions.

Key words: watermelon, drip irrigation, water-nitrogen coupling, NH3 emission, N2O emission