收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2024, Vol. 47 ›› Issue (9): 1542-1554.doi: 10.12118/j.issn.1000-6060.2023.661 cstr: 32274.14.ALG2023661

• 生物与土壤 • 上一篇    下一篇

W-OH固化剂对高寒矿区煤矸石水分入渗的影响及模型拟合

杨鹏辉(), 杨海龙(), 杨思远, 张巍, 张颂扬   

  1. 北京林业大学水土保持学院,北京 100083
  • 收稿日期:2023-11-23 修回日期:2024-03-12 出版日期:2024-09-25 发布日期:2024-09-24
  • 通讯作者: 杨海龙(1966-),男,博士,副教授,主要从事水土保持、流域治理研究. E-mail: yang_hlong@163.com
  • 作者简介:杨鹏辉(1996-),男,硕士研究生,主要从事高寒矿区阻水层重构研究. E-mail: yang_penghui1122@163.com
  • 基金资助:
    国家重点研发计划项目(2022YFF1302604)

Effect of W-OH stabilizer on water infiltration of coal gangue in high-cold mining areas and model fitting

YANG Penghui(), YANG Hailong(), YANG Siyuan, ZHANG Wei, ZHANG Songyang   

  1. Collge of Soil and Water Conservation, Beijing Forestry University, Beijing 100083
  • Received:2023-11-23 Revised:2024-03-12 Published:2024-09-25 Online:2024-09-24

摘要:

采用室内积水条件下煤矸石柱水分入渗模拟试验,研究了不同浓度W-OH(0%、1.5%、2.5%和3.5%)喷施处理对高寒矿区煤矸石水分入渗的影响,同时采用Philip、Kostiakov和Horton 3种入渗模型对入渗过程进行拟合,利用一维代数模型预测煤矸石剖面体积含水率分布特征,并评价模型适用性。结果表明:(1) 累计入渗量和湿润锋前进距离随入渗时间的增加而逐渐增加且与W-OH浓度存在负相关性。同一入渗时刻,W-OH浓度越大,入渗率和湿润锋前进速率越小,与对照(0%W-OH)相比,3种W-OH浓度(1.5%、2.5%、3.5%)处理的初始入渗率分别降低了1.12%、3.59%和9.64%,稳定入渗率分别降低了16.92%、78.46%和89.23%,平均入渗率分别降低了11.35%、58.26%和71.02%。(2) 3种入渗模型都能较好地拟合不同浓度W-OH处理煤矸石水分入渗过程,Philip、Kostiakov和Horton模型的决定系数(R2)均值分别为0.962、0.957和0.967,其中Horton模型的拟合效果较好。(3) 积水入渗过程中同一W-OH浓度,埋深越大,水分入渗至各监测点所需的时间越长,同一深度,W-OH浓度越大,水分入渗至各监测点所需的时间也越长。(4) 一维代数模型可以较好地模拟入渗结束后煤矸石剖面体积含水率分布特征,模拟值与实测值间的均方根误差(RMSE)和平均绝对误差(MAE)分别在2.574%~3.326%之间和2.308%~2.707%之间,符合度指数(D)均在0.92以上。研究结果可以为W-OH固化剂在高寒矿区煤矸石山冻土剖面重构中的应用提供理论指导。

关键词: 煤矸石, W-OH, 累计入渗量, 入渗率, 湿润锋, 模型拟合

Abstract:

A simulation experiment was conducted on the water infiltration of coal gangue columns under indoor waterlogging conditions to study the effect of different concentrations of W-OH (0%, 1.5%, 2.5%, and 3.5%) spraying treatment on the water infiltration of coal gangue in high-altitude mining areas. Three infiltration models were used to fit the infiltration process, and a one-dimensional algebraic model was used to predict the distribution characteristics of the volume water content of coal gangue profiles, and the applicability of the model was evaluated. The results indicate that: (1) The cumulative infiltration amount and the distance of wetting front advance gradually increases with the increase of infiltration time, and there is a negative correlation with the concentration of W-OH. At the same infiltration time, the higher the concentration of W-OH, the lower the infiltration rate and wetting front advance rate. Compared with the control (0% W-OH), the initial infiltration rates of the three W-OH concentrations (1.5%, 2.5%, 3.5%) decreased by 1.12%, 3.59%, and 9.64%, respectively. The stable infiltration rates decreased by 16.92%, 78.46%, and 89.23%, respectively, and the average infiltration rates decreased by 11.35%, 58.26%, and 71.02%, respectively. (2) The three infiltration models can all fit the water infiltration process of coal gangue well treated with different concentrations of W-OH. The coefficient of determination (R2) mean values of the Philip, Kostiakov, and Horton model are 0.962, 0.957, and 0.967, respectively. Among them, the Horton model has a good fitting effect. (3) During the process of water infiltration, the larger the burial depth of the same W-OH concentration, the longer it takes for water to infiltrate to each monitoring point. At the same depth, the higher the W-OH concentration, the longer it takes for water to infiltrate to each monitoring point. (4) The one-dimensional algebraic model can effectively simulate the distribution characteristics of volumetric water content in coal gangue profiles after infiltration. The root mean squared error (RMSE) and mean absolute error (MAE) between the simulated and measured values is 2.574%-3.326% and 2.308%-2.707%, respectively, with compliance index (D) values above 0.92. The research results provide theoretical guidance for the application of W-OH solidifying agent in the reconstruction of frozen soil profiles in coal gangue mountains in high-altitude and cold mining areas.

Key words: coal gangue, W-OH, accumulated infiltration amount, infiltration rate, moist front, model fitting