[1] |
Liu Q, Yang Z P, Han F, et al. NDVI-based vegetation dynamics and their response to recent climate change: A case study in the Tianshan Mountains, China[J]. Environmental Earth Sciences, 2016, 75(16): 1189, doi: 10.1007/s12665-016-5987-5.
|
[2] |
Gu Y J, Han C L, Fan J W, et al. Alfalfa forage yield, soil water and P availability in response to plastic film mulch and P fertilization in a semiarid environment[J]. Field Crops Research, 2018, 215: 94-103.
|
[3] |
Zhang Q B, Liu J Y, Liu X S, et al. Optimizing the nutritional quality and phosphorus use efficiency of alfalfa under drip irrigation with nitrogen and phosphorus fertilization[J]. Agronomy Journal, 2020, 112(4): 3129-3139.
|
[4] |
周霞, 魏杨, 李东嵘, 等. 黄土区紫花苜蓿根系对土体抗剪性能的影响[J]. 中国水土保持科学, 2019, 17(2): 53-59.
|
|
[Zhou Xia, Wei Yang, Li Dongrong, et al. Strengthening effects of alfalfa roots on soil shear resistance in loess region[J]. Science of Soil and Water Conservation, 2019, 17(2): 53-59.]
|
[5] |
Paul K, Melissa A C, Courtney E C, et al. Soil ecosystem functioning under climate change: Plant species and community effects[J]. Ecology, 2010, 91(3): 767-781.
pmid: 20426335
|
[6] |
Jing C L, Xu Z C, Zou P, et al. Coastal halophytes alter properties and microbial community structure of the saline soils in the Yellow River Delta, China[J]. Applied Soil Ecology, 2019, 134: 1-7.
|
[7] |
Khan A G. Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation[J]. Journal of Trace Elements in Medicine and Biology, 2005, 18(4): 355-364.
doi: 10.1016/j.jtemb.2005.02.006
pmid: 16028497
|
[8] |
Gqozo M P, Bill M, Siyoum N, et al. Fungal diversity and community composition of wheat rhizosphere and non-rhizosphere soils from three different agricultural production regions of South Africa[J]. Applied Soil Ecology, 2020, 151: 103543, doi: 10.1016/j.apsoil.2020.103543.
|
[9] |
Philippot L, Raaijmakers J M, Lemanceau P, et al. Going back to the roots: The microbial ecology of the rhizosphere[J]. Nature Reviews Microbiology, 2013, 11: 789-799.
doi: 10.1038/nrmicro3109
pmid: 24056930
|
[10] |
Kennedy A C, Smith K L. Soil microbial diversity and the sustainability of agricultural soils[J]. Plant and Soil, 1995, 170(1): 75-86.
|
[11] |
瞿宋林, 吴一凡, 刘忠宽, 等. 丛枝菌根真菌对紫花苜蓿生长发育特性的影响[J]. 草地学报, 2022, 30(10): 2529-2534.
doi: 10.11733/j.issn.1007-0435.2022.10.001
|
|
[Qu Songlin, Wu Yifan, Liu Zhongkuan, et al. Research progress for effects of arbuscular mycorrhizal fungi on growth and development of alfalfa[J]. Acta Agrestia Sinica, 2022, 30(10): 2529-2534.]
doi: 10.11733/j.issn.1007-0435.2022.10.001
|
[12] |
王倩倩, 陆嘉惠, 张洁, 等. 不同分布区胀果甘草原生境土壤微生物群落结构特征及其影响因素[J]. 生态学报, 2022(23): 1-16.
|
|
[Wang Qianqian, Lu Jiahui, Zhang Jie, et al. Soil microbial community structure and its influencing factors in original habitat of Glycyrrhiza inflata in different distribution areas[J]. Acta Ecologica Sinica, 2022(23): 1-16.]
|
[13] |
王晓春, 高婷. 盐碱地紫花苜蓿根际土壤真菌多样性分析[J]. 农业与技术, 2023, 43(24): 9-12.
|
|
[Wang Xiaochun, Gao Ting. Analysis of fungal diversity in the rhizosphere soil of purple alfalfa in saline alkali soil[J]. Agriculture and Technology, 2023, 43(24): 9-12.]
|
[14] |
翟亚萍, 王绍明, 刘鸯, 等. 不同种植地苜蓿根际土壤细菌群落结构多样性差异分析[J]. 新疆农业科学, 2021, 58(5): 955-964.
doi: 10.6048/j.issn.1001-4330.2021.05.020
|
|
[Zhai Yaping, Wang Shaomig, Liu Yang, et al. Study on structural diversity of bacterial community in rhizosphere soil of alfalfa in parts of northern foot of Tianshan Mountains[J]. Xinjiang Agricultural Science, 2021, 58(5): 955-964.]
|
[15] |
鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
|
|
[Bao Shidan. Soil agrochemical analysis[M] Beijing: China Agricultural Publishing House, 2000.]
|
[16] |
关松荫. 土壤酶及其研究法[M]. 北京: 农业出版社, 1986.
|
|
[Guan Songyin. Soil enzymes and research methods[M]. Beijing: Agriculture Press, 1986.]
|
[17] |
韩博远, 张闻, 胡芳雨, 等. 模拟及实际根系分泌物对芘污染土壤微生物群落的影响[J]. 环境科学, 2022, 43(2): 1077-1088.
|
|
[Han Boyuan, Zhang Wen, Hu Fangyu, et al. Influence of artificial root exudates and actual root exudates on the microbial community in pyrene-contaminated soil[J]. Environmental Science, 2022, 43(2): 1077-1088.]
|
[18] |
邓莹莲, 赵长林. 基于高通量测序分析云南大理剑川羊肚菌土壤细菌群落结构及多样性[J]. 中国农学通报, 2023, 39(10): 79-87.
doi: 10.11924/j.issn.1000-6850.casb2022-0286
|
|
[Deng Yinglian, Zhao Changlin. Soil bacterial community structure and diversity of morchella in Jianchuan of Dali in Yunnan Province based on high-throughput sequencing[J]. Chinese Agricultural Science Bulletin, 2023, 39(10): 79-87.]
|
[19] |
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads[J]. Embnet Journal, 2011, 17(1): 10-12.
|
[20] |
Brian J H, Dirk G, Ashlee M E, et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons[J]. Cold Spring Harbor Laboratory Press, 2011, 21(3): 494-504.
|
[21] |
Hallama M, Pekrun C, Lambers H, et al. Hidden miners: The roles of cover crops and soil microorganisms in phosphorus cycling through agroecosystems[J]. Plant and Soil, 2019, 434: 7-45.
doi: 10.1007/s11104-018-3810-7
|
[22] |
Marcel G A, Susanne B, Ludo L, et al. A widespread plantfungal-bacterial symbiosis promotes plant biodiversity, plant nutrition and seedling recruitment[J]. The ISME Journal, 2016, 10(2): 389-399.
|
[23] |
徐飞, 张拓, 怀宝东, 等. 土地利用变化对松花江下游湿地土壤真菌群落结构及功能的影响[J]. 环境科学, 2021, 42(5): 2531-2540.
|
|
[Xu Fei, Zhang Tuo, Huai Baodong, et al. Effects of land use changes on soil fungal community structure and function in the riparian wetland along the downstream of the Songhua River[J]. Environmental Science, 2021, 42(5): 2531-2540.]
|
[24] |
贾丹, 王琪瑶, 李云红, 等. 小兴安岭红松林土壤理化性质及酶活性的研究[J]. . 林业科技, 2023, 48(3): 23-26.
|
|
[Jia Dan, Wang Qiyao, Li Yunhong, et al. Study on soil physicochemical property and soil enzyme activity of Pinus koraiensis forest in Xiaoxing’an Mountains[J]. Forestry Science & Technology, 2023, 48(3): 23-26.]
|
[25] |
刘芳, 汪航飞, 蒲春燕, 等. 不同施肥对葡萄苗根际微生物量、土壤酶活性和生理的影响[J]. 四川农业大学学报, 2023, 41(2): 318-324.
|
|
[Liu Fang, Wang Hangfei, Pu Chunyan, et al. Effects of different fertilization on rhizosphere microbial biomass, soil enzyme activity and physiology of grape seedlings[J]. Journal of Sichuan Agricultural University, 2023, 41(2): 318-324.]
|
[26] |
孙慧, 张建锋, 许华森, 等. 余姚滨海不同盐碱度土壤微生物群落组成及土壤酶活性的变化[J]. 应用生态学报, 2016, 27(10): 3361-3370.
|
|
[Sun Hui, Zhang Jianfeng, Xu Huasen, et al. Variations of soil microbial community composition and enzyme activities with different salinities on Yuyao coast, Zhejiang, China[J]. Chinese Journal of Applied Ecology, 2016, 27(10): 3361-3370.]
|
[27] |
刘子涵, 黄方园, 黎景来, 等. 覆盖模式对旱作农田土壤微生物多样性及群落结构的影响[J]. 生态学报, 2021, 41(7): 2750-2760.
|
|
[Liu Zihan, Huang Fangyuan, Li Jinglai, et al. Effects of farmland mulching patterns on soil microbial diversity and community structure in dryland[J]. Acta Ecologica Sinica, 2021, 41(7): 2750-2760.]
|
[28] |
高彦婷, 张芮, 董博, 等. 垄沟覆盖集雨模式对玉米根际土壤微生物多样性的影响[J]. 干旱区地理, 2024, 47(3): 413-423.
|
|
[Gao Yanting, Zhang Rui, Dong Bo, et al. Effects of ridge mulching and rain harvesting patterns on microbial diversity in maize rhizosphere soil[J]. Arid Land Geography, 2024, 47(3): 413-423.]
|
[29] |
于天赫, 张乃莉, 于爽, 等. 北京城市公园常见乔木土壤真菌群落特征及影响因素[J]. 生态学报, 2021, 41(5): 1835-1845.
|
|
[Yu Tianhe, Zhang Naili, Yu Shuang, et al. The characteristics of soil fungal community and effect factors under common tree species in urban parks of Beijing[J]. Acta Ecologica Sinica, 2021, 41(5): 1835-1845.]
|
[30] |
姜霓雯, 梁辰飞, 张勇, 等. 土地利用变化后不同种植年限香榧土壤微生物群落的组成及多样性[J]. 环境科学, 2021, 43(1): 1-14.
|
|
[Jiang Niwen, Liang Chenfei, Zhang Yong, et al. Microbial composition and diversity in soil of Torreya grandis cv. merrillii relative to different cultivation years after land use conversion[J]. Environmental Science, 2021, 43(1): 1-14.]
|
[31] |
周煜杰, 贾夏, 赵永华, 等. 秦岭火地塘真菌群落海拔分布格局[J]. 应用生态学报, 2021, 32(7): 2589-2596.
doi: 10.13287/j.1001-9332.202107.033
|
|
[Zhou Yujie, Jia Xia, Zhao Yonghua, et al. Altitude distribution of fungal community in Huoditang in Qinling Mountains, northwest China[J]. Chinese Journal of Applied Ecology, 2021, 32(7): 2589-2596.]
doi: 10.13287/j.1001-9332.202107.033
|
[32] |
de Vries F T, Griffiths R I, Knight C G, et al. Harnessing rhizosphere microbiomes for drought-resilient crop production[J]. Science, 2020, 368(6488): 270-274.
doi: 10.1126/science.aaz5192
pmid: 32299947
|
[33] |
Liu F, Mo X, Kong W J, et al. Soil bacterial diversity, structure, and function of Suaeda salsa in rhizosphere and non-rhizosphere soils in various habitats in the Yellow River Delta, China[J]. Science of the Total Environment, 2020, 740: 140144, doi: 10.1016/j.scitotenv.2020.140144.
|
[34] |
王诗慧, 常顺利, 李鑫, 等. 天山林区土壤真菌多样性及其群落结构[J]. 生态学报, 2021, 41(1): 124-134.
|
|
[Wang Shihui, Chang Shunli, Li Xin, et al. Soil fungal diversity and its community structure in Tianshan Forest[J]. Acta Ecologica Sinica, 2021, 41(1): 124-134.]
|
[35] |
杨盼, 翟亚萍, 赵祥, 等. AM真菌和根瘤菌互作对苜蓿根际土壤真菌群落结构的影响及功能预测[J]. 草业科学, 2020, 37(9): 1669-1680.
|
|
[Yang Pan, Zhai Yaping, Zhao Xiang, et al. Effect of arbuscular mycorrhizal fungi and rhizobium inoculation on soil fungal community structure and function in the rhizosphere of Medicago sativa[J]. Pratacultural Science, 2020, 37(9): 1669-1680.]
|
[36] |
王小玲, 马琨, 伏云珍, 等. 免耕覆盖及有机肥施用对土壤真菌群落组成及多样性的影响[J]. 应用生态学报, 2020, 31(3): 890-898.
doi: 10.13287/j.1001-9332.202003.039
|
|
[Wang Xiaoling, Ma Kun, Fu Yunzhen, et al. Effects of no-tillage, mulching, and organic fertilization on soil fungal community composition and diversity[J]. Chinese Journal of Applied Ecology, 2020, 31(3): 890-898.]
doi: 10.13287/j.1001-9332.202003.039
|
[37] |
刘震, 徐玉鹏, 王秀领, 等. 黑龙港苜蓿根际土壤真菌群落结构及多样性分析[J]. 江苏农业科学, 2021, 49(10): 197-201.
|
|
[Liu Zhen, Xu Yupeng, Wang Xiuling, et al. Analysis of fungal community structure and diversity in the rhizosphere soil of alfalfa in Heilonggang[J]. Jiangsu Agricultural Science, 2021, 49(10): 197-201.]
|
[38] |
孙俊奇, 杨超, 金静, 等. 被孢霉真菌代谢液对苜蓿、马唐、稗草的影响[J]. 中国草地学报, 2023, 45(11): 92-98.
|
|
[Sun Junqi, Yang Chao, Jin Jing, et al. Effects of mortierella isolated from alfalfa rhizosphere on growth of alfalfa, crabgrass and barnyard grass[J]. Chinese Journal of Grassland, 2023, 45(11): 92-98.]
|
[39] |
袁军. 中国西南地区亚隔孢壳科(Didymellaceae)植物病原真菌分子系统学研究[D]. 贵阳: 贵州大学, 2021.
|
|
[Yuan Jun. Molecular systematics of plant pathogenic fungi in the Didymellaceae family in southwestern China[D]. Guiyang: Guizhou University, 2021.]
|
[40] |
赵鹏, 罗晶, 庄文颖. COI基因作为丛赤壳科真菌DNA条形码的测试[J]. 菌物学报, 2012, 31(2): 243-250.
|
|
[Zhao Peng, Luo Jing, Zhuang Wenying. Can COI gene be used as DNA barcode for the nectriaceous fungi?[J]. Mycosystema, 2012, 31(2): 243-250.]
|
[41] |
Raimondo M L, Carlucci A. Characterization and pathogenicity assessment of Plectosphaerella species associated with stunting disease on tomato and pepper crops in Italy[J]. Plant Pathology, 2018, 67(3): 626-641.
|
[42] |
Nguyen N H, Song Z W, Bates S T, et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild[J]. Fungal Ecology, 2016, 20: 241-248.
|
[43] |
Liu H L, Tan Y, Nell M, et al. Arbuscular mycorrhizal fungal colonization of Glycyrrhiza glabra roots enhances plant biomass, phosphorus uptake and concentration of root secondary metabolites[J]. Journal of Arid Land, 2014, 6(2): 186-194.
|
[44] |
徐丽娟, 刁志凯, 李岩, 等. 菌根真菌的生理生态功能[J]. 应用生态学报, 2012, 23(1): 285-292.
|
|
[Xu Lijuan, Diao Zhikai, Li Yan, et al. Eco-physiological functions of mycorrhizal fungi[J]. Chinese Journal of Applied Ecology, 2012, 23(1): 285-292.]
pmid: 22489511
|
[45] |
Guo W J, Ding J X, Wang Q T, et al. Soil fertility controls ectomycorrhizal mycelial traits in alpine forests receiving nitrogen deposition[J]. Soil Biology and Biochemistry, 2021, 161: 108386, doi: 10.1016/j.soilbio.2021.108386.
|
[46] |
罗正明, 刘晋仙, 暴家兵, 等. 五台山亚高山土壤真菌海拔分布格局与构建机制[J]. 生态学报, 2020, 40(19): 7009-7017.
|
|
[Luo Zhengming, Liu Jinxian, Bao Jiabing, et al. Elevational distribution patterns and assembly mechanisms of soil fungal community in Mount Wutai, Shanxi, China[J]. Journal of Ecology, 2020, 40(19): 7009-7017.]
|
[47] |
刘晓勤, 张锐利. 新疆红枣黑斑病根际土壤真菌群落组成及多样性的分析[J]. 北方园艺, 2020(14): 94-102.
|
|
[Liu Xiaoqin, Zhang Ruili. Analysis on composition and diversity of fungal community in analysison composition and diversity of fungal community in rhizosphere soil of jujube black spot disease in Xinjiang[J]. Northern Horticulture, 2020(14): 94-102.]
|
[48] |
陈永成, 李肖, 蔡宜东, 等. 昆仑山沙区旱作紫花苜蓿根际/非根际土壤理化性质及真菌群落特征[J]. 草业科学, 2023, 40(5): 1232-1242.
|
|
[Chen Yongcheng, Li Xiao, Cai Yidong, et al. Physicochemical properties and fungal community characteristics of dry-cultivated alfalfa rhizosphere and non-rhizosphere soils in the sandy area of Kunlun Mountains[J]. Pratacultural Science, 2023, 40(5): 1232-1242.]
|
[49] |
张晓丽, 张宏媛, 卢闯, 等. 河套灌区不同秋浇年限对土壤细菌群落的影响[J]. 中国农业科学, 2019, 52(19): 3380-3392.
doi: 10.3864/j.issn.0578-1752.2019.19.009
|
|
[Zhang Xiaoli, Zhang Hongyuan, Lu Chuang, et al. Effects of the different autumn irrigation years on soil bacterial community in Hetao irrigation district[J]. Scientia Agricultura Sinica, 2019, 52(19): 3380-3392.]
doi: 10.3864/j.issn.0578-1752.2019.19.009
|
[50] |
Shen C C, Xiong J B, Zhang H Y, et al. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain[J]. Soil Biology and Biochemistry, 2013, 57: 204-211.
|
[51] |
刘震, 徐玉鹏, 黄伟, 等. 苜蓿连作对盐碱土壤微生物群落结构的影响[J]. 作物研究, 2020, 34(6): 557-562.
|
|
[Liu Zhen, Xu Yupeng, Huang Wei, et al. Effects of alfalfa continuous cropping on microbial community structure in saline-alkali soil[J]. Crop Research, 2020, 34(6): 557-562.]
|
[52] |
Badiane N N Y, Achouak W, Christen R, et al. Characteristics of microbial habitats in a tropical soil subject to different fallow management[J]. Applied Soil Ecology, 2008, 38(1): 51-61.
|