[1] |
宋先松, 石培基, 金蓉. 中国水资源空间分布不均引发的供需矛盾分析[J]. 干旱区研究, 2005, 22(2): 162-166.
|
|
[Song Xiansong, Shi Peiji, Jin Rong. Analysis on the contradiction between supply and demand of water resources in China owing to uneven regional distribution[J]. Arid Zone Research, 2005, 22(2): 162-166.]
|
[2] |
李应林, 高素华. 利用人工增雨为农田需水服务的信息系统框架[J]. 干旱区研究, 2004, 21(3): 246-249.
|
|
[Li Yinglin, Gao Suhua. A framework of information system serving for artificial rainfall over the croplands in north China[J]. Arid Zone Research, 2004, 21(3): 246-249.]
|
[3] |
刘畅. 声波凝聚消雾的仿真与实验研究[D]. 长沙: 国防科技大学, 2020.
|
|
[Liu Chang. Simulation and experimental research on fog removal by acoustic wave condensation[D]. Changsha: National University of Defense Technology, 2020.]
|
[4] |
卜凡亮, 王蓉, 金华, 等. 声波定向发射及其在人工降雨中的应用研究[C]// 中国仪器仪表学会, 北京自动化学会. 第三届全国虚拟仪器大会论文集. 北京: 《仪器仪表学报》杂志社, 2008: 309-312.
|
|
[Bu Fanliang, Wang Rong, Jin Hua, et al. The research of sound wave directional transmission and its application in artificial rainfall[C]// Chinese Society of Instrumentation, Beijing Society of Automation. Proceedings of the Third National Virtual Instrument Conference. Beijing: Chinese Journal of Scientific Instrument, 2008: 309-312.]
|
[5] |
柏文文, 魏加华, 倪三川, 等. 低频声波作用下微液滴沉降实验研究[J]. 应用基础与工程科学学报, 2020, 28(2): 247-258.
|
|
[Bai Wenwen, Wei Jiahua, Ni Sanchuan, et al. Experimental study on micro-droplet sedimentation under the action of low-frequency acoustic wave[J]. Journal of Basic Science and Engineering, 2020, 28(2): 247-258.]
|
[6] |
Qiu J, Tang L J, Cheng L, et al. Interaction between strong sound waves and cloud droplets: Cloud chamber experiment[J]. Applied Acoustics, 2021, 176(4): 107891, doi: 10.1016/j.apacoust.2020.107891.
|
[7] |
魏加华, 裘钧, 李铁键, 等. 云和降水在低频强声波干预下的响应[J]. 中国科学: 技术科学, 2021, 51(12): 1555-1556.
|
|
[Wei Jiahua, Qiu Jun, Li Tiejian, et al. Cloud and precipitation interference by strong low-frequency sound wave[J]. Science in China: Technical Sciences, 2021, 51(12): 1555-1556.]
|
[8] |
潘佩翀, 时洋, 赵智丰, 等. 干旱内陆区声波干预下降雨微物理特征研究[J]. 干旱区地理, 2021, 44(4): 906-913.
|
|
[Pan Peichong, Shi Yang, Zhao Zhifeng, et al. Microphysical characteristics of precipitation under the intervention of acoustic over an inland arid region[J]. Arid Land Geography, 2021, 44(4): 906-913.]
|
[9] |
张文煜, 任婧, 付丹红, 等. 祁连山一次降水过程云模式模拟参数的选择及微物理结构特征分析[J]. 干旱区研究, 2022, 39(6): 1717-1727.
|
|
[Zhang Wenyu, Ren Jing, Fu Danhong, et al. Selection of cloud model simulation parameters and analysis of microphysical structure characteristics of the precipitation process in the Qilian Mountains[J]. Arid Zone Research, 2022, 39(6): 1717-1727.]
|
[10] |
周文娟, 杨柏松, 马小蕊. 西宁气象站站址迁移同期观测资料对比分析[J]. 青海环境, 2023, 33(3): 116-119, 123.
|
|
[Zhou Wenjuan, Yang Baisong, Ma Xiaorui. Comparative analysis of observation data during site relocation of Xining meteorological station[J]. Qinghai Environment, 2023, 33(3): 116-119, 123.]
|
[11] |
陈刚, 赵坤, 吕迎辉, 等. 河南“21·7”特大暴雨过程微物理特征变化分析[J]. 中国科学: 地球科学, 2022, 52(10): 1887-1904.
|
|
[Chen Gang, Zhao Kun, Lü Yinghui, et al. Variability of microphysical characteristics in the “21·7” Henan extremely heavy rainfall event[J]. Science China Earth Sciences, 2022, 52(10): 1887-1904.]
|
[12] |
张庆池, 刘端阳, 武艳, 等. 淮北地区不同类型暴雨雨滴谱特征及其Z-R关系研究[J]. 气象学报, 2022, 80(6): 967-985.
|
|
[Zhang Qingchi, Liu Duanyang, Wu Yan, et al. Raindrop spectral characteristics and Z-R relationship of different rainstorm types in Huaibei region[J]. Acta Meteorologica Sinica, 2022, 80(6): 967-985.]
|
[13] |
袁晓清, 倪广恒, 潘安君, 等. 基于最优化算法的北京市新一代天气雷达Z-R关系研究[J]. 水文, 2010, 30(1): 1-6.
|
|
[Yuan Xiaoqing, Ni Guangheng, Pan Anjun, et al. Nexrad Z-R power relationship in Beijing based on optimization algorithm[J]. Journal of China Hydrology, 2010, 30(1): 1-6.]
|
[14] |
佘运江, 聂成, 佘晨旭, 等. 襄阳新一代天气雷达Z-R关系本地化修正分析[J]. 气象水文海洋仪器, 2019, 36(2): 36-37, 44.
|
|
[She Yunjiang, Nie Cheng, She Chenxu, et al. Localization correction analysis for Z-R relation of Xiangyang new generation weather radar[J]. Meteorological, Hydrological and Marine Instruments, 2019, 36(2): 36-37, 44.]
|
[15] |
黄军, 王鹏, 张瑞翔, 等. 燃煤电站大流量烟气下飞灰细颗粒声波团聚实验研究[J]. 热力发电, 2019, 48(6): 90-95.
|
|
[Huang Jun, Wang Peng, Zhang Ruixiang, et al. Experimental study on acoustic agglomeration of fine fly ash particles in flue gas with large flow in coal-fired power plant[J]. Thermal Power Generation, 2019, 48(6): 90-95.]
|
[16] |
肖辉, 舒未希, 付丹红, 等. 声波对气溶胶和云雾粒子聚并影响研究进展[J]. 应用气象学报, 2021, 32(3): 257-271.
|
|
[Xiao Hui, Shu Weixi, Fu Danhong, et al. A review on the effect of sound waves upon the coalescence of aerosol and cloud and fog particles[J]. Journal of Applied Meteorological Science, 2021, 32(3): 257-271.]
|
[17] |
杨旭峰, 凡凤仙. 驻波声场中直链颗粒团聚体运动的数值模拟[J]. 动力工程学报, 2015, 35(4): 287-291, 340.
|
|
[Yang Xufeng, Fan Fengxian. Numerical simulation on motion of chain-like particle aggregates in standing wave acoustic field[J]. Journal of Chinese Society of Power Engineering, 2015, 35(4): 287-291, 340.]
|
[18] |
姚辉辉, 张光学, 吴林陶, 等. 变频声波团聚超细液滴气溶胶的实验研究[J]. 热能动力工程, 2021, 36(7): 54-59.
|
|
[Yao Huihui, Zhang Guangxue, Wu Lintao, et al. Experimental study on fine droplet aerosol removal by constantly-variable-frequency acoustic agglomeration[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36(7): 54-59.]
|
[19] |
李文建, 王珍岩, 黄海军. 基于原位激光粒度仪(LISST)的悬浮体平均粒径计算方法对比研究[J]. 海洋科学, 2020, 44(5): 24-33.
|
|
[Li Wenjian, Wang Zhenyan, Huang Haijun. Comparative study on calculation of mean size of suspended particulate matter based on the LISST[J]. Marine Science, 2020, 44(5): 24-33.]
|
[20] |
倪红红, 马强, 卜元坤, 等. 陕西省林业企业时空格局演变及影响因素分析[J]. 干旱区地理, 2023, 46(12): 2098-2110.
|
|
[Ni Honghong, Ma Qiang, Bu Yuankun, et al. Spatiotemporal distribution pattern evolution and influencing factors of forestry enterprises in Shaanxi Province[J]. Arid Land Geography, 2023, 46(12): 2098-2110.]
|
[21] |
姜璐, 刘艳娟, 史晓楠, 等. 基于物质流的青海高原城镇社区家庭能源消费研究——以西宁市为例[J]. 干旱区地理, 2023, 46(2): 294-304.
|
|
[Jiang Lu, Liu Yanjuan, Shi Xiaonan, et al. Household energy consumption in urban communities in Qinghai Plateau based on material flow: A case of Xining City[J]. Arid Land Geography, 2023, 46(2): 294-304.]
|
[22] |
王淑芝, 温得平. 青藏高原大通河流域径流变化归因分析[J]. 干旱区地理, 2024, 47(2): 203-213.
|
|
[Wang Shuzhi, Wen Deping. Attribution analysis of runoff change in the Datong River Basin, Qinghai-Tibet Plateau[J]. Arid Land Geography, 2024, 47(2): 203-213.]
|
[23] |
裘钧, 路后亮, 赵智丰, 等. 基于降雨时间结构分析的黄河源区声波增雨外场试验效果评价[J]. 应用基础与工程科学学报, 2020, 28(3): 691-702.
|
|
[Qiu Jun, Lu Houliang, Zhao Zhifeng, et al. Evaluation the effect of acoustic raining field experiments in the source region of the Yellow River based on the analysis of the time structure of rain[J]. Journal of Basic Science and Engineering, 2020, 28(3): 691-702.]
|
[24] |
Bai W W, Shi Y, Zhao Z F, et al. Investigation of critical response characteristics of micro-droplets under the action of low-frequency acoustic waves[J]. Frontiers in Environmental Science, 2022, 10: 972648, doi: 10.3389/fenvs.2022.972648.
|
[25] |
胥梦杰, 郭保华, 郑珊珊, 等. 基于线性回归分析的网约车需求量影响因素研究[J]. 青海交通科技, 2023, 35(2): 6-12, 52.
|
|
[Xu Mengjie, Guo Baohua, Zheng Shanshan, et al. A study of the influencing factors of the demand for network vehicles based on linear regression analysis[J]. Qinghai Transportation Science and Technology, 2023, 35(2): 6-12, 52.]
|