收藏设为首页 广告服务联系我们在线留言

干旱区地理 ›› 2024, Vol. 47 ›› Issue (6): 1073-1083.doi: 10.12118/j.issn.1000-6060.2023.242

• 区域发展 • 上一篇    下一篇

基于生态网络的生态修复关键区识别——以延安市为例

许忠洋(), 王琤(), 顾彤, 王诗雨, 裴晨阳, 张青峰   

  1. 西北农林科技大学资源环境学院,陕西 咸阳 712000
  • 收稿日期:2023-05-27 修回日期:2023-08-10 出版日期:2024-06-25 发布日期:2024-07-09
  • 通讯作者: 王琤(1981-),男,博士,讲师,硕士生导师,主要从事数字地图制图理论与方法、空间分析与建模、空间信息可视化研究.
    E-mail: chengwong@nwsuaf.edu.cn
  • 作者简介:许忠洋(1997-),男,硕士研究生,主要从事干旱区生态网络构建和生态修复分区划定. E-mail: xuzhongyang152065@163.com
  • 基金资助:
    陕西省自然科学基础研究计划项目(2021JZ-17);陕西省农业协同创新与推广联盟项目(LMR202204)

Identification of the key areas of ecological restoration based on the ecological network: A case study of Yan’an City

XU Zhongyang(), WANG Cheng(), GU Tong, WANG Shiyu, PEI Chenyang, ZHANG Qingfeng   

  1. College of Natural Resources and Environment, Northwest A & F University, Xianyang 712000, Shaanxi, China
  • Received:2023-05-27 Revised:2023-08-10 Published:2024-06-25 Online:2024-07-09

摘要:

划定生态修复关键区是落实差异化生态修复策略的前提与基础。以延安市为例,采用形态学空间格局法构建景观格局,融合可能连通性指数识别生态源地。基于土地利用、归一化植被指数等影响因子,利用最小累积阻力模型计算最小累积阻力差值,提取生态廊道,构建生态网络,并通过成本连通性划分廊道等级,利用图论法分析网络结构特征,最后叠加生态廊道与景观格局,识别延安市生态修复关键区。结果表明:(1) 延安市森林、草地等覆盖基数较大,但整体较分散,景观连通性较差。(2) 延安市生态源地主要分布在西南和东南部,而东北部生境质量较差,不宜物种栖息。(3) 延安市生态廊道以森林景观为主,其中重要廊道占10%,主要集中在西部和南部,生态网络空间分布极不均匀。(4) 生态网络的闭合度、复杂度和连通度均较低,网络稳定性较差。(5) 延安市生态孤岛主要分布在洛川县,生态修复关键区主要集中在富县和黄龙县,其中一级修复区占比21.93%。研究结果可为延安市及其他市域生态修复关键区识别及生态网络建设提供参考和依据。

关键词: 生态修复关键区, 最小累计阻力差值, 生态网络, 延安市

Abstract:

Delimiting key areas of ecological restoration is the prerequisite and foundation for implementing differentiated ecological restoration strategies. Taking Yan’an City, Shaanxi Province, China as an example, this paper employs morphological spatial pattern analysis to construct landscape patterns and integrate the probability of connectivity index to identify ecological sources. In addition, it utilizes the minimum cumulative resistance model based on impact factors like land use and normalized difference vegetation index to calculate the minimum cumulative resistance difference, extract ecological corridors, construct an ecological network, divide corridor levels by cost connectivity, and analyze network structure characteristics using graph theory. Finally, ecological corridors and landscape patterns are superimposed to identify the critical areas for ecological restoration in Yan’an City. The results show that: (1) Yan’an City has an extensive coverage of forest and grassland, although with scattered overall coverage and poor landscape connectivity. (2) Ecological sources in Yan’an City are mainly distributed in the southwest and southeast, while the northeast has poor habitat quality and is unsuitable for species habitat. (3) Ecological corridors mainly comprised forest landscapes, including 10% of the crucial corridors, with extremely uneven spatial distribution of the ecological networks. (4) Ecological networks’ closure, complexity, and connectivity are low, and the network stability is poor. (5) Islets in Yan’an City are mainly distributed in Luochuan County, with key areas of ecological restoration mainly concentrated in Fu County and Huanglong County, including 21.93% of the Level 1 restoration areas. These results can provide a reference and basis for identifying the critical areas of ecological restoration and constructing ecological networks in Yan’an City.

Key words: key areas of ecological restoration, minimum cumulative resistance difference, ecological network, Yan’an City