Climate Change

Comprehensively analysis of an extreme snowstorm in the west of southern Xinjiang in spring

  • Junjie SHI ,
  • Mingjing SUN ,
  • Xinsheng LYU ,
  • Junlan ZHANG ,
  • Huoqing LI
Expand
  • 1. Xinjiang Meteorological Observatory, Urumqi 830002, Xinjiang, China
    2. Institute of Desert Meteorology, China Meteorological Administration, Urumqi 830002, Xinjiang, China

Received date: 2021-03-02

  Revised date: 2021-05-24

  Online published: 2022-01-21

Abstract

Based on the high radiosonde observation data, National ground weather station observation data, National Center for Environmental Prediction (NCEP, 0.25°×0.25°) reanalysis data, FY2E satellite data, and products of Kashgar Doppler weather radar station, extreme snowstorm weather in the west of southern Xinjiang of China from March 3 to 6, 2017 was comprehensively analyzed. According to the findings, the 500 hPa low vortex cutoff in Central Asia is the primary influence system of the extreme snowstorm. In this snowstorm, three main branches of water vapor emerge from the west and south of the middle and high layers, as well as from the east of the middle and low layers. The long-term maintenance of east jet formed between 850-700 hPa is not only critical in water vapor transportation (the water vapor transports from the eastern part of Tarim Basin in southern Xinjiang to the west and converges in the west of southern Xinjiang forming a convergence center, increasing the efficiency of water vapor convergence), but it also lifts the relatively warm and humid air in the west of southern Xinjiang to a certain height and acts as a “cold pad”. In this snowfall process, the development and maintenance of meso-β scale convective cloud clusters with black body temperature (TBB) <-65 °C and scales between 80-200 km in the cloud belt are the main reasons for the high snowfall intensity. Kashgar station’s Doppler radar echo appears to be a mixed echo accompanied by stratiform and block cloud echo. The reflectivity factor of stratiform cloud echo is typically 15-25 dBZ, with a large horizontal scale, long time duration, and a small variation range, resulting in long-term stable snowfall. The strongest reflectivity factor of block echo is >40 dBZ, and the top height is >5 km, indicating convective echo characteristics, resulting in strong hourly snow over 2 mm·h-1. Further study shows that the extreme snowstorm process shows part of the characteristics of elevated convection in the cold season. The latitude-altitude profiles of geostrophic absolute momentum (Mg) and pseudo equivalent potential temperature (θse), together with the Wuqia station, the largest snowfall center, show that during the snowstorm process, the slope of θse is greater than that of Mg between 700-550 hPa, satisfying the conditional symmetric instability criterion. It is preliminarily judged that the extreme snowfall is caused by the inclined convection caused by the conditional symmetric instability.

Cite this article

Junjie SHI , Mingjing SUN , Xinsheng LYU , Junlan ZHANG , Huoqing LI . Comprehensively analysis of an extreme snowstorm in the west of southern Xinjiang in spring[J]. Arid Land Geography, 2022 , 45(1) : 131 -140 . DOI: 10.12118/j.issn.1000–6060.2021.110

References

[1] 张家宝, 邓子风. 新疆降水概论[M]. 北京: 气象出版社, 1987: 77-89.
[1] [Zhang Jiabao, Deng Zifeng. A generality of rainfall in Xinjiang[M]. Beijing: Meteorology Press, 1987: 77-89. ]
[2] 胡顺起, 曹张驰, 陈滔. 山东省南部一次极端特大暴雪过程诊断分析[J]. 高原气象, 2017, 36(4):984-992.
[2] [Hu Shunqi, Cao Zhangchi, Chen Tao. Diagnostic analysis of a historical extreme snow process in south of Shandong Province[J]. Plateau Meteorology, 2017, 36(4):984-992. ]
[3] 李刚, 刘畅, 曹玥瑶, 等. 一次1月山东半岛东部极端海效应暴雪的发生机制分析[J]. 气象, 2020, 46(8):1074-1088.
[3] [Li Gang, Liu Chang, Cao Yueyao, et al. Case study on generation mechanism of extreme ocean-effect snowstorm in the east of Shandong Peninsula in January[J]. Meteorological Monthly, 2020, 46(8):1074-1088. ]
[4] 卢秉红, 杨青, 高松影, 等. 两次不同类型暴雪的雷达回波特征分析[J]. 干旱气象, 2016, 34(5):836-840.
[4] [Lu Binghong, Yang Qing, Gao Songying, et al. Doppler radar echo features about two kinds of snowstorm weather process[J]. Journal of Arid Meteorology, 2016, 34(5):836-840. ]
[5] 胡亮帆, 胡文东, 谷思雨, 等. 宁夏一次春季突发寒潮极值暴雪过程的等熵位涡分析[J]. 干旱区地理, 2019, 42(2):271-279.
[5] [Hu Liangfan, Hu Wendong, Gu Siyu, et al. Isentropic potential vorticity for a sudden cold wave and extreme snowstorm process in spring 2016 in Ningxia[J]. Arid Land Geography, 2019, 42(2):271-279. ]
[6] 王宁, 秦玉琳, 姚帅, 等. 不同触发条件下吉林省一次极端暴雪大风天气过程诊断分析[J]. 气象与环境学报, 2017, 33(3):1-9.
[6] [Wang Ning, Qin Yulin, Yao Shuai, et al. Diagnostic analysis of an extreme blizzard and gale weather process under different triggering conditions over Jilin Province[J]. Journal of Meteorology and Environment, 2017, 33(3):1-9. ]
[7] 李津, 赵思雄, 孙建华. 一次华北破纪录暴雪成因的分析研究[J]. 气候与环境研究, 2017, 22(6):683-698.
[7] [Li Jin, Zhao Sixiong, Sun Jianhua. Analysis of a record heavy snowfall event in north China[J]. Climatic and Environmental Research, 2017, 22(6):683-698. ]
[8] 刘红武, 李振, 唐林, 等. 2018年12月湖南极端低温暴雪环流特征及成因分析[J]. 暴雨灾害, 2020, 39(5):487-495.
[8] [Liu Hongwu, Li Zhen, Tang Lin, et al. Circulation characteristics and causes of extreme low temperature and blizzard in Hunan in December 2018[J]. Torrential Rain and Disasters, 2020, 39(5):487-495. ]
[9] 孙俊, 邓国卫, 夏炳江. 川西高原中部一次极端暴雪成因分析[J]. 气象科技, 2018, 46(3):584-593.
[9] [Sun Jun, Deng Guowei, Xia Bingjiang. Analysis of an extreme snowstorm weather process in centrol western Sinchuan Plateau[J]. Meteorological Science and Technology, 2018, 46(3):584-593. ]
[10] 张俊兰, 杨霞, 李建刚, 等. 2015年12月新疆极端暴雪天气过程分析[J]. 沙漠与绿洲气象, 2018, 12(5):1-9.
[10] [Zhang Junlan, Yang Xia, Li Jiangang, et al. The analysis to the process of extreme blizzard in weather in December of 2015[J]. Desert and Oasis Meteorology, 2018, 12(5):1-9. ]
[11] 张俊兰, 万瑜, 闵月. 乌鲁木齐“2015. 12. 11”极端暴雪天气的综合分析[J]. 沙漠与绿洲气象, 2017, 11(1):1-10.
[11] [Zhang Junlan, Wan Yu, Min Yue. Comprehensive analysis of an extreme blizzard in Urumqi on December 11th, 2015[J]. Desert and Oasis Meteorology, 2017, 11(1):1-10. ]
[12] 许婷婷, 张云惠, 于碧馨, 等. 2015年12月乌鲁木齐极端暴雪成因分析[J]. 沙漠与绿洲气象, 2017, 11(5):23-29.
[12] [Xu Tingting, Zhang Yunhui, Yu Bixin, et al. Analysis of extreme blizzard in December 2015 in Urumqi[J]. Desert and Oasis Meteorology, 2017, 11(5):23-29. ]
[13] 牟欢, 赵丽, 孙硕阳, 等. 天山北麓两次暴雪天气对比分析[J]. 干旱区地理, 2019, 42(6):1262-1272.
[13] [Mou Huan, Zhao Li, Sun Shuoyang, et al. Comparative analysis of two blizzard weather mechanisms in the northern piedmonts of Tianshan Mountains[J]. Arid Land Geography, 2019, 42(6):1262-1272. ]
[14] 王勇, 赵战成, 晏军, 等. 新疆雪灾的时空分布特征及等级划分[J]. 干旱区地理, 2020, 43(3):577-583.
[14] [Wang Yong, Zhao Zhancheng, Yan Jun, et al. Spatial and temporal distribution characteristics and its classification of snow disaster in Xinjiang[J]. Arid Land Geography, 2020, 43(3):577-583. ]
[15] 张云惠, 于碧馨, 谭艳梅, 等. 乌鲁木齐一次极端暴雪事件中尺度分析[J]. 气象科技, 2016, 44(3):430-438.
[15] [Zhang Yunhui, Yu Bixin, Tan Yanmei, et al. Mesoscale analysis of an extreme blizzard in Urumqi[J]. Meteorological Science and Technology, 2016, 44(3):430-438. ]
[16] 田亚林, 李雪梅, 李珍, 等. 1980—2017年年天山山区不同降水形态的时空变化[J]. 干旱区地理, 2020, 43(2):308-318.
[16] [Tian Yalin, Li Xuemei, Li Zhen, et al. Spatial and temporal variations of different precipitation types in the Tianshan Mountains from 1980 to 2017[J]. Arid Land Geography, 2020, 43(2):308-318. ]
[17] 新疆气象局. 新疆短期天气预报指导手册[M]. 乌鲁木齐: 新疆人民出版社, 1986: 184-217.
[17] [Xinjiang Weather Bureau. Xinjiang weather forecast guidance manual[M]. Urumqi: Xinjiang People’s Publishing House, 1986: 184-217. ]
[18] 杨霞, 张云惠, 赵逸舟, 等. 南疆西部一次罕见大暴雪过程分析[J]. 高原气象, 2015, 34(5):1414-1423.
[18] [Yang Xia, Zhang Yunhui, Zhao Yizhou, et al. Analysis on rare snowstorm in west of southern Xinjiang[J]. Plateau Meteorology, 2015, 34(5):1414-1423. ]
[19] 张云惠, 钱文新. 南疆西部一次暴雪天气诊断分析[J]. 新疆气象, 2005, 34(增刊1):21-23.
[19] [Zhang Yunhui, Qian Wenxin. The analysis of a snowstorm in west of south-Xinjiang[J]. Xinjiang Meteorology. 2005, 34(Suppl. 1):21-23. ]
[20] Colman B R. Thunderstroms above frontal surfaces in environments without positive CAPE[J]. Monthly Weather Review, 1990, 118(5):1103-1121.
[21] 吴乃庚, 林良勋, 冯业荣, 等. 2012年初春华南“高架雷暴”天气过程成因分析[J]. 气象, 2013, 39(4):410-417.
[21] [Wu Naigeng, Lin Liangxun, Feng Yerong, et al. Analysis on the causes of an elevated thunderstorm in early spring of south China[J]. Meteorological Monthly, 2013, 39(4):410-417. ]
[22] 张一平, 俞小鼎, 孙景兰, 等. 2012年早春河南一次高架雷暴天气成因分析[J]. 气象, 2014, 40(1):48-58.
[22] [Zhang Yiping, Yu Xiaoding, Sun Jinglan, et al. Analysis on weather causes of an elevated thunderstorm in Henan in early spring 2012[J]. Meteorological Monthly, 2014, 40(1):48-58. ]
[23] 俞小鼎, 周小刚, 王秀明. 中国冷季高架对流个例初步分析[J]. 气象学报, 2016, 74(6):902-918.
[23] [Yu Xiaoding, Zhou Xiaogang, Wang Xiuming. A preliminary case study of elevated convection in China[J]. Acta Meteorologica Sinica, 2016, 74(6):902-918. ]
[24] 俞小鼎, 姚秀萍, 熊廷南, 等. 多普勒天气雷达原理与业务应用[M]. 北京: 气象出版社, 2006: 47-53.
[24] [Yu Xiaoding, Yao Xiuping, Xiong Tingnan. Principle and business application of Doppler weather radar[M]. Beijing: Meteorology Press, 2006: 47-53. ]
Outlines

/