Spatiotemporal variation of snow cover in the Yarkant River Basin during 2002—2018
Received date: 2020-03-24
Revised date: 2020-10-09
Online published: 2021-03-09
Snow cover is one of the active elements in the cryosphere sensitive to climate changes. Its change can affect the global climate and hydrology changes, and its surface mass and energy balance are affected by the snow-covered days (SCD), snow cover onset dates (SCOD), and snow cover melting dates (SCMD). In this study, we employed the MODIS daily cloud-free snow cover product to calculate variations of snow cover percentage (SCP), SCD, SCOD, and SCMD from July 2002 to June 2018 in the Yarkant River Basin, south Xinjiang, China and then analyzed their distribution and spatiotemporal variations. We discussed the cause of the variation and the relation between the abnormal change of snow cover and ENSO. We found the following results: (1) In the study period, the snow cover area exhibited a slight decrease trend and had a significant negative correlation with temperature and a positive correlation with precipitation. SCP showed a clear linear increase trend with increasing altitude (R²=0.92, P<0.01). When the maximum SCP appears in each altitude zone, the month is generally delayed with the rise in altitude. In contrast, when the minimum SCP appears, the month has no obvious change with altitude (concentrated in August). SCP in spring is less than that in winter when below the 4000 m altitude. On the other hand, SCP in spring is greater than that in winter when above the 4000 m altitude. (2) Clear elevation gradients were found for SCD, SCOD, and SCMD. The spatial distributions of SCD, SCOD, and SCMD are gradually increased, delayed, and advanced, respectively, in a northeast-to-southwest direction in the basin. In the basin, from 2002 to 2018, SCD decreased to 91.9%, SCOD delayed to 65.6%, and SCMD advanced to 77.4%. (3) In 2006, 2008, and 2017, the snow cover area was abnormally large, whereas, in 2010, it was abnormally small, which may be affected by ENSO. (4) High mountains concentrated along the Karakoram, including Parts of the eastern Pamir Plateau, experienced a lengthened SCD, an advanced SCOD, and a delayed SCMD related to the continuous low temperature and the increase of precipitation in spring and autumn.
YI Ying,LIU Shiyin,ZHU Yu,WU Kunpeng . Spatiotemporal variation of snow cover in the Yarkant River Basin during 2002—2018[J]. Arid Land Geography, 2021 , 44(1) : 15 -26 . DOI: 10.12118/j.issn.1000–6060.2021.01.02
[1] | Zhang T. Influence of the seasonal snow cover on the ground thermal regime: An overview[J]. Reviews of Geophysics, 2005, 43(4): RG4002. |
[2] | Zimov S A, Schuur E A G, Chapin III F S. Permafrost and the global carbon budget[J]. Science (Washington), 2006,312(5780):1612-1613. |
[3] | Henderson G R, Leathers D J, Hanson B. Circulation response to Eurasian versus North American anomalous snow scenarios in the northern Hemisphere with an AGCM coupled to a slab ocean model[J]. Journal of Climate, 2013,26(5):1502-1515. |
[4] | Kolstad E W. Causal pathways for temperature predictability from snow depth[J]. Journal of Climate, 2017,30(23):9651-9663. |
[5] | Portner H O, Roberts D, Masson-Delmotte V, et al. IPCC special report on the ocean and cryosphere in a changing climate[J]. Geneva: IPCC Intergovernmental Panel on Climate Change, 2019. |
[6] | 肖鹏峰, 冯学智, 谢顺平, 等. 新疆天山玛纳斯河流域高分辨率积雪遥感研究进展[J]. 南京大学学报(自然科学版), 2015,51(5):909-920. |
[6] | [ Xiao Pengfeng, Feng Xuezhi, Xie Shunping, et al. Research progress of high-resolution remote sensing of snow in Manasi River Basin in Tianshan Mountains, Xinjiang Province[J]. Journal of Nanjing University (Natural Sciences), 2015,51(5):909-920. ] |
[7] | Brown R D, Robinson D A. Northern Hemisphere spring snow cover variability and change over 1922—2010 including an assessment of uncertainty[J]. The Cryosphere, 2011,5(1):219-229. |
[8] | Wang Y, Huang X, Liang H, et al. Tracking snow variations in the northern Hemisphere using multi-source remote sensing data (2000—2015)[J]. Remote Sensing, 2018,10(1):136. |
[9] | Zhang Y, Ma N. Spatiotemporal variability of snow cover and snow water equivalent in the last three decades over Eurasia[J]. Journal of Hydrology, 2018,559:238-251. |
[10] | Huang X, Deng J, Ma X, et al. Spatiotemporal dynamics of snow cover based on multi-source remote sensing data in China[J]. The Cryosphere, 2016,10(5):2453-2463. |
[11] | 孙燕华, 黄晓东, 王玮, 等. 2003—2010 年青藏高原积雪及雪水当量的时空变化[J]. 冰川冻土, 2015,36(6):1337-1344. |
[11] | [ Sun Yanhua, Huang Xiaodong, Wang Wei, et al. Spatio-temporal changes of snow cover and snow water equivalent in the Tibetan Plateau during 2003—2010[J]. Journal of glaciology and cryopedology, 2015,36(6):1337-1344. ] |
[12] | Zheng W, Du J, Zhou X, et al. Vertical distribution of snow cover and its relation to temperature over the Manasi River Basin of Tianshan Mountains, northwest China[J]. Journal of Geographical Sciences, 2017,27(4):403-419. |
[13] | Ahmad S, Israr M, Liu S, et al. Spatio-temporal trends in snow extent and their linkage to hydro-climatological and topographical factors in the Chitral River Basin (Hindukush, Pakistan)[J]. Geocarto International, 2018: 1-24. |
[14] | Hasson S, Lucarini V, Khan M R, et al. Early 21st century snow cover state over the western river basins of the Indus River system[J]. Hydrology and Earth System Sciences, 2014,18(10):4077-4100. |
[15] | Tahir A A, Chevallier P, Arnaud Y, et al. Snow cover trend and hydrological characteristics of the Astore River Basin (western Himalayas) and its comparison to the Hunza Basin (Karakoram region)[J]. Science of the Total Environment, 2015,505:748-761. |
[16] | Tahir A A, Adamowski J F, Chevallier P, et al. Comparative assessment of spatiotemporal snow cover changes and hydrological behavior of the Gilgit, Astore and Hunza River basins (Hindukush-Karakoram-Himalaya region, Pakistan)[J]. Meteorology and Atmospheric Physics, 2016,128(6):793-811. |
[17] | 何海迪, 李忠勤, 张明军. 基于 MODIS 数据中国天山积雪面积时空变化特征分析[J]. 干旱区地理, 2018,41(2):367-374. |
[17] | [ He Haidi, Li Zhongqin, Zhang Mingjun. Spatio-temporal variation analysis of snow cover area of Tianshan Mountains in China using MODIS data[J]. Arid Land Geography, 2018,41(2):367-374. ] |
[18] | Liu G, Wu R, Zhang Y, et al. The summer snow cover anomaly over the Tibetan Plateau and its association with simultaneous precipitation over the Mei-yu-baiu region[J]. Advances in Atmospheric Sciences, 2014,31(4):755-764. |
[19] | Xiong C, Shi J, Cui Y, et al. Snowmelt pattern over high-mountain Asia detected from active and passive microwave remote sensing[J]. IEEE Geoscience and Remote Sensing Letters, 2017,14(7):1096-1100. |
[20] | 曾小箕, 丁建丽, 鄢雪英, 等. 基于MODIS数据的土库曼斯坦山区积雪监测[J]. 干旱区地理, 2013,36(4):717-723. |
[20] | [ Zeng Xiaoji, Ding Jianli, Yan Xueying, et al. Snow monitoring using MODIS in Turkmenistan Mountains[J]. Arid Land Geography, 2013,36(4):717-723. ] |
[21] | 姜康, 包刚, 乌兰图雅, 等. 基于MODIS数据的蒙古高原积雪时空变化研究[J]. 干旱区地理, 2019,42(4):782-789. |
[21] | [ Jiang Kang, Bao Gang, Wulan Tuya, et al. Spatiotemporal changes of snow cover in Mongolian Plateau based on MODIS data[J]. Arid Land Geography, 2019,42(4):782-789. |
[22] | 张祥松, 米德生. 喀喇昆仑山现代冰川的研究[J]. 冰川冻土, 2012,4(3):15-28. |
[22] | [ Zhang Xiangsong, Mi Desheng. Study of present glaciers in the Karakoram[J]. Journal of Glaciology and Cryopedology 2012,4(3):15-28. ] |
[23] | Hewitt K. Glaciers of the Karakoram Himalaya[M]. Encyclopedia of Snow, Ice and Glaciers. Dordrecht: Springer, 2014: 429-436. |
[24] | 孙本国, 毛炜峄, 冯燕茹, 等. 叶尔羌河流域气温,降水及径流变化特征分析[J]. 干旱区研究, 2006,23(2):203-209. |
[24] | [ Sun Benguo, Mao Weiyi, Feng Yanru, et al. Study on the change of air temperature, precipitation and runoff volume in the Yarkant River Basin[J]. Arid Zone Research, 2006,23(2):203-209. ] |
[25] | Guo W, Liu S, Yao X, et al. The second glacier inventory dataset of China (Version 1.0)[DB]. Cold and Arid Regions Science Data Center at Lanzhou, 2014, doi: 10.3972/glacier.001.2013.db |
[26] | Liu T L, Yang Q, Qin R, et al. Climate change towards warming-wetting trend and its effects on runoff at the headwater region of the Yarkand River in Xinjiang[J]. Journal of Arid Land Resources and Environment, 2008,22(9):49-53. |
[27] | Chen Y N, Xu C C, Hao X M, et al. Fifty-year climate change and its effect on annual runoff in the Tarim River Basin, China[J]. Quaternary International, 2009,208(1-2):53-61. |
[28] | 王翠, 李生宇, 雷加强, 等. 叶尔羌河流域气候变化特征及趋势分析[J]. 干旱区资源与环境, 2018,32(1):155-160. |
[28] | [ Wang Cui, Li Shengyu, Lei Jiaqiang, et al. Regional climatic characteristics and its change trend in Yeerqiang River Basin[J]. Journal of Arid Land Resources and Environment, 2018,32(1):155-160. ] |
[29] | Zhang X S, Zhou Y C. Study on the sudden flood of the glacial lake of the Yeerjing River in the Karakoram Mountains[M]. Beijing: Science Press, 1990. |
[30] | Qiu Y, Guo H, Chu D, et al. MODIS daily cloud-free snow cover products over Tibetan Plateau[J]. Science Data Bank, 2016, doi: 10.11922/csdata.170.2016.003 |
[31] | Harris I, Jones P D, Osborn T J, et al. Updated high-resolution grids of monthly climatic observations: The CRU TS3.10 Dataset[J]. International Journal of Climatology, 2014,34(3):623-642. |
[32] | Wolter K, Timlin M S. El Ni?o/southern oscillation behaviour since 1871 as diagnosed in an extended multivariate ENSO index (MEI. ext)[J]. International Journal of Climatology, 2011,31(7):1074-1087. |
[33] | Wang X, Xie H. New methods for studying the spatiotemporal variation of snow cover based on combination products of MODIS Terra and Aqua[J]. Journal of Hydrology, 2009,371(1-4):192-200. |
[34] | Rojo J, Rivero R, Romero-Morte J, et al. Modeling pollen time series using seasonal-trend decomposition procedure based on LOESS smoothing[J]. International Journal of Biometeorology, 2017,61(2):335-348. |
[35] | Sanchez-Vazquez M J, Nielen M, Gunn G J, et al. Using seasonal-trend decomposition based on loess (STL) to explore temporal patterns of pneumonic lesions in finishing pigs slaughtered in England, 2005—2011[J]. Preventive Veterinary Medicine, 2012,104(1-2):65-73. |
[36] | Cleveland R B, Cleveland W S. STL: A seasonal-trend decomposition procedure based on loess[J]. Journal of Official Statistics, 1990,6:3-33. |
[37] | Hirsch R M, Slack J R. A nonparametric trend test for seasonal data with serial dependence[J]. Water Resources Research, 1984,20(6):727-732. |
[38] | Sen P K. Estimates of the regression coefficient based on Kendall’s tau[J]. Journal of the American Statistical Association, 1968,63(324):1379-1389. |
[39] | Deng H, Pepin N C, Liu Q, et al. Understanding the spatial differences in terrestrial water storage variations in the Tibetan Plateau from 2002 to 2016[J]. Climatic Change, 2018,151(3-4):379-393. |
[40] | Hamed K H. Trend detection in hydrologic data: The Mann-Kendall trend test under the scaling hypojournal[J]. Journal of hydrology, 2008,349(3-4):350-363. |
[41] | Qin D H, Liu S Y, Li P J. Snow cover distribution, variability, and response to climate change in western China[J]. Journal of climate, 2006,19(9):1820-1833. |
[42] | Kripalani R H, Kulkarni A, Sabade S S. El Ni?o southern oscillation, Eurasian snow cover and the Indian monsoon rainfall[J]. Proceedings of the Indian National Science Academy: Part A, 2001,67(3):361-368. |
[43] | Wu B, Wang J. Winter Arctic oscillation, Siberian high and east Asian winter monsoon[J]. Geophysical Research Letters, 2002,29(9):3-1-3-4. |
[44] | 徐丽娇, 李栋梁, 胡泽勇. 青藏高原积雪日数与高原季风的关系[J] . 高原气象, 2010,29(5):1093-1101. |
[44] | [ Xu Lijiao, Li Dongliang, Hu Zeyong. Relationship between the snow cover day and monsoon index in Tibetan Plateau[J]. Plateau Meteor, 2010,29(5):1093-1101. ] |
[45] | Birsan M V, Dumitrescu A. Snow variability in Romania in connection to large-scale atmospheric circulation[J]. International Journal of Climatology, 2014,34(1):134-144. |
[46] | 李培基. 高亚洲积雪监测[J]. 冰川冻土, 1996,18:105-114. |
[46] | [ Li Peiji. Monitoring snow cover on the High-Asia[J]. Journal of Glaciology and Geocryology, 1996,18:105-114. ] |
[47] | 柯长青, 李培基. 青藏高原积雪分布与变化特征[J]. 地理学报, 1998,65(3):209-215. |
[47] | [ Ke Changqing, Li Peiji. Spatial and temporal characteristics of snow cover over the Qinghai-Xizang Plateau[J]. Acta Geographica Sinica, 1998,65(3):209-215. ] |
[48] | 王叶堂, 何勇, 侯书贵. 2000—2005年青藏高原积雪时空变化分析[J]. 冰川冻土, 2007,29(6):855-861. |
[48] | [ Wang Yetang, He Yong, Hou Shugui. Analysis of the temporal and spatial variations of snow cover over the Tibetan Plateau based on MODIS[J]. Journal of Glaciology and Geocryology, 2007,29(6):855-861. ] |
[49] | Wang T, Peng S, Ottle C, et al. Spring snow cover deficit controlled by intraseasonal variability of the surface energy fluxes[J]. Environmental Research Letters, 2015,10(2):024018, doi: 10.1088/1748-9326/10/2/024018 |
[50] | Ye K, Lau N C. Influences of surface air temperature and atmospheric circulation on winter snow cover variability over Europe[J]. International Journal of Climatology, 2017,37(5):2606-2619. |
[51] | Seager R, Kushnir Y, Nakamura J, et al. Northern Hemisphere winter snow anomalies: ENSO, NAO and the winter of 2009/10[J]. Geophysical Research Letters, 2010,37(14):L14703, doi: 10.1029/2010GL043830 |
[52] | Ge Y, Gong G. North American snow depth and climate teleconnection patterns[J]. Journal of Climate, 2009,22(2):217-233. |
[53] | Sobolowski S, Frei A. Lagged relationships between North American snow mass and atmospheric teleconnection indices[J]. International Journal of Climatology: A Journal of the Royal Meteorological Society, 2007,27(2):221-231. |
[54] | 刘颖, 倪允琪. ENSO对亚洲夏季风环流和中国夏季降水影响的诊断研究[J]. 气象学报, 1998,56(6):681-691. |
[54] | [ Liu Ying, Ni Yunqi. Diagnostic research of the effects of ENSO on the Asian summer monsoon circulation and the summer precipitation in China[J]. Acta Meteorologica Sinica, 1998,56(6):681-691. ] |
[55] | Feng J, Chen W. Interference of the East Asian winter monsoon in the impact of ENSO on the East Asian summer monsoon in decaying phases[J]. Advances in Atmospheric Sciences, 2014,31(2):344-354. |
[56] | 李天然, 张人禾, 温敏. ENSO对中国冬半年降水影响的不对称性及机制分析[J]. 热带气象学报, 2017,33(1):1-10. |
[56] | [ Li Tianran, Zhang Renhe, Wen Min. Impact of ENSO on the precipitation over China in winter half-years[J]. Journal of Tropical Meteorology, 2017,33(1):1-10. ] |
[57] | Wallace J M, Rasmusson E M, Mitchell T P, et al. On the structure and evolution of ENSO-related climate variability in the tropical Pacific: Lessons from TOGA[J]. Journal of Geophysical Research: Oceans, 1998,103(C7):14241-14259. |
[58] | Li X, Gao P, Li Q, et al. Muti-paths impact from climate change on snow cover in Tianshan Mountainous area of China[J]. Climate Change Research, 2016,12:303-312. |
[59] | Tang Z, Wang X, Wang J, et al. Spatiotemporal variation of snow cover in Tianshan Mountains, Central Asia, based on cloud-free MODIS fractional snow cover product, 2001—2015[J]. Remote Sensing, 2017,9(10):1045. |
[60] | Saavedra F A, Kampf S K, Fassnacht S R, et al. Changes in Andes snow cover from MODIS data, 2000—2016[J]. The Cryosphere, 2018,12(3):1027-1046. |
[61] | 贾翔, 陈蜀江, 黄铁成, 等. 基于 MODIS 数据的新疆叶尔羌河流域山区积雪特征分析[J]. 冰川冻土, 2014,36(2):296-303. |
[61] | [ Jia Xiang, Chen Shujiang, Huang Tiecheng, et al. Variability of snow cover in the mountain region of the Yarkant River Basin analyzed with MODIS data[J]. Journal of Glaciology and Geocryology, 2014,36(2):296-303. ] |
[62] | Peng S, Piao S, Ciais P, et al. Change in winter snow depth and its impacts on vegetation in China[J]. Global Change Biology, 2010,16(11):3004-3013. |
/
〈 | 〉 |