Climatology and Hydrology

Evaluation of hourly and daily precipitation forecasting performance of the CMA-MESO model in the warm season: A case of the Ili River Valley

  • MOU Huan ,
  • CHEN Chunyan ,
  • YANG Xia ,
  • ZHAO Li
Expand
  • 1. Xinjiang Uygur Autonomous Region Meteorological Observatory, Urumqi 830000, Xinjiang, China
    2. Xinjiang Information Engineering School, Urumqi 830013, Xinjiang, China

Received date: 2024-06-05

  Revised date: 2024-07-15

  Online published: 2025-02-25

Abstract

The performance evaluation of quantitative precipitation forecasts can provide a scientific basis for the application and improvement of such forecasts. In this study, hourly site precipitation observation data and the CMA-MESO model’s quantitative precipitation forecast data from May to September (the warm season) of 2022—2023. Using evaluation indicators such as the probability of correct rainfall, threat score (TS), false alarm ratio, and missed alarm ratio, precipitation forecast performance over the Ili River Valley was analyzed. The results revealed the following: (1) The CMA-MESO model can reasonably depict the 1 h and 24 h precipitation characteristics in the Ili River Valley during the warm season. As the precipitation intensity increases, both the forecast and observed frequencies of precipitation show a downward trend. (2) The TS for the CMA-MESO model forecast of precipitation of different intensities is closely related to the forecast bias of the accumulated precipitation probability. The 24 h precipitation forecast TS score for the range of 6.1-12.0 mm is the lowest, with the highest cumulative probability forecast bias, exceeding a mean of 2.0%. The 1 h forecast TS score significantly decreases with the enhancement of precipitation intensity, reaching a peak bias of 1.7% at 0.1 mm. (3) The frequency of the forecasted and observed precipitation shows an increasing trend with altitude. However, the 24 h forecast frequency exhibits a negative bias across all altitudes, while the 1 h forecast frequency shows a positive bias in the low-altitude areas and a negative bias in the sub-high-altitude areas. (4) In terms of diurnal variation, the CMA-MESO model did not accurately simulate the characteristic of low precipitation frequency during the day and higher frequency during the night in the Ili River Valley. Specifically, the model tends to have more false alarms for daytime precipitation and more missed alarms for nighttime precipitation. A comparison of the frequency of precipitation observations with forecasts shows that the pattern of the forecast trend from early morning to afternoon is completely opposite to the observed frequency; the most significant forecast biases occurs between 13:00—14:00 and 02:00—05:00.

Cite this article

MOU Huan , CHEN Chunyan , YANG Xia , ZHAO Li . Evaluation of hourly and daily precipitation forecasting performance of the CMA-MESO model in the warm season: A case of the Ili River Valley[J]. Arid Land Geography, 2025 , 48(2) : 179 -189 . DOI: 10.12118/j.issn.1000-6060.2024.350

References

[1] 杨霞, 安大维, 周鸿奎, 等. 2012—2017年伊犁河谷冬季降水日变化特征[J]. 冰川冻土, 2020, 42(2): 609-619.
  [Yang Xia, An Dawei, Zhou Hongkui, et al. Daily variation of winter precipitation in Ili River Valley of Xinjiang from 2012 to 2017[J]. Journal of Glaciology and Geocryology, 2020, 42(2): 609-619. ]
[2] 隋露, 闫志明, 李开放, 等. 人类活动及气候变化影响下伊犁河谷生境质量预测研究[J]. 干旱区地理, 2024, 47(1): 104-116.
  [Sui Lu, Yan Zhiming, Li Kaifang, et al. Prediction of habitat quality in the Ili River Valley under the influence of human activities and climate change[J]. Arid Land Geography, 2024, 47(1): 104-116. ]
[3] 文广超, 赵梅娟, 谢洪波, 等. 伊犁河谷西部土地植被覆盖演化及驱动力分析[J]. 干旱区研究, 2021, 38(3): 843-854.
  [Wen Guangchao, Zhao Meijuan, Xie Hongbo, et al. Analysis of land vegetation cover evolution and driving forces in the western part of the Ili River Valley[J]. Arid Zone Research, 2021, 38(3): 843-854. ]
[4] 梁世川, 乔华, 吕东, 等. 伊犁谷地地质灾害分布特征及主控因素分析[J]. 干旱区地理, 2023, 46(6): 880-888.
  [Liang Shichuan, Qiao Hua, Lü Dong, et al. Distribution characteristics and main controlling factors of geohazards in Ili Valley[J]. Arid Land Geography, 2023, 46(6): 880-888. ]
[5] 曹小红, 孟和, 尚彦军, 等. 伊犁谷地黄土滑坡发育分布规律及成因[J]. 新疆地质, 2020, 38(3): 405-411.
  [Cao Xiaohong, Meng He, Shang Yanjun, et al. The development and distribution of loess landslides in Yili Valley and its causes[J]. Xinjiang Geology, 2020, 38(3): 405-411. ]
[6] 赵良军, 李虎, 刘玉锋, 等. 新疆伊犁果子沟地质灾害风险评价及其致灾因子[J]. 干旱区研究, 2017, 34(3): 693-700.
  [Zhao Liangjun, Li Hu, Liu Yufeng, et al. Evaluation on geological hazard risk and disaster-causing factors in the Guozigou Valley in Ili, Xinjiang[J]. Arid Zone Research, 2017, 34(3): 693-700. ]
[7] Deng H L, Chen Y N, Wang H M, et al. Climate change with elevation and its potential impact on water resources in the Tianshan Mountains, Central Asia[J]. Global & Planetary Change, 2015, 135(12): 28-37.
[8] 张家宝, 邓子风. 新疆降水概论[M]. 北京: 气象出版社, 1987: 10-19.
  [Zhang Jiabao, Deng Zifeng. Introduction to precipitation in Xinjiang[M]. Beijing: China Meteorological Press, 1987: 10-19. ]
[9] Li L, Li J, Yu R C. Characteristics of summer regional rainfall events over Ili River Valley in northwest China[J]. Atmospheric Research, 2020, 243: 104996, doi: 10.1016/j.atmosres.2020.104996.
[10] Smith R B. The influence of mountains on the atmosphere[J]. Advances in Geophysics, 1979, 21: 87-230.
[11] 陈春艳, 王建捷, 唐冶, 等. 新疆夏季降水日变化特征[J]. 应用气象学报, 2017, 28(1): 72-85.
  [Chen Chunyan, Wang Jianjie, Tang Ye, et al. Diurnal variations of summer precipitation in Xinjiang[J]. Journal of Applied Meteorological Science, 2017, 28(1): 72-85. ]
[12] 郑永光, 张小玲, 周庆亮, 等. 强对流天气短时临近预报业务技术进展与挑战[J]. 气象, 2010, 36(7): 33-42.
  [Zheng Yongguang, Zhang Xiaoling, Zhou Qingliang, et al. Review on severe convective weather short-term forecasting and nowcasting[J]. Meteorological Monthly, 2010, 36(7): 33-42. ]
[13] 黄丽萍, 邓莲堂, 王瑞春, 等. CMA-MESO关键技术集成及应用[J]. 应用气象学报, 2022, 33(6): 641-654.
  [Huang Liping, Deng Liantang, Wang Ruichun, et al. Key technologies of CMA-MESO and application to operational forecast[J]. Journal of Applied Meteorological Science, 2022, 33(6): 641-654. ]
[14] 庄照荣, 江源, 田伟红, 等. CMA-MESO逐时快速更新同化预报系统及其短临预报效果初步分析[J]. 大气科学, 2023, 47(4): 925-942.
  [Zhuang Zhaorong, Jiang Yuan, Tian Weihong, et al. Hourly rapid updating assimilation forecast system of CMA-MESO and preliminary analysis of short-term forecasting effect[J]. Chinese Journal of Atmospheric Sciences, 2023, 47(4): 925-942. ]
[15] Ma Z S, Liu Q J, Zhao C F, et al. Application and evaluation of an explicit prognostic cloud-cover scheme in GRAPES global forecast system[J]. Journal of Advances in Modeling Earth Systems, 2018, 10: 652-667.
[16] Liu K, Chen Q Y, Sun J. Modification of cumulus convection and planetary boundary layer schemes in the GRAPES global model[J]. Journal of Meteorological Research, 2015(5): 17, doi: 10.1007/s13351-015-5043-5.
[17] 曹勇, 包红军, 张恒德, 等. 基于快速滚动更新的无缝隙定量降水预报模型[J]. 河海大学学报(自然科学版), 2021, 49(4): 303-308.
  [Cao Yong, Bao Hongjun, Zhang Hengde, et al. Seamless quantitative precipitation forecasting model based on rapid rolling update technique[J]. Journal of Hohai University (Natural Sciences Edition), 2021, 49(4): 303-308. ]
[18] 王澄海. CMIP研究计划的进展及其在中国地区的检验和应用前景[J]. 地球科学进展, 2009, 24(5): 461-468.
  [Wang Chenghai. Evaluating the progress of the CMIP and its application prospect in China[J]. Advances in Earth Science, 2009, 24(5): 461-468. ]
[19] 潘留杰, 张宏芳, 王建鹏. 数值天气预报检验方法研究进展[J]. 地球科学进展, 2014, 29(3): 327-335.
  [Pan Liujie, Zhang Hongfang, Wang Jianpeng. Progress on verification methods of numerical weather prediction[J]. Advances in Earth Science, 2014, 29(3): 327-335. ]
[20] Gilleland E, Ahijevych D A, Brown G G. Intercomparison of spatial forecast verification methods[J]. Weather and Forecasting, 2009, 24(6): 1416-1429.
[21] 陈静, 刘凑华, 陈法敬, 等. 一种基于可预报性的暴雨预报评分新方法Ⅰ: 中国暴雨可预报性综合指数[J]. 气象学报, 2019, 77(1): 15-27.
  [Chen Jing, Liu Couhua, Chen Fajing, et al. A new verification method for heavy rainfall forecast based on predictability Ⅰ: Synthetic predictability index of heavy rainfall in China[J]. Acta Meteorologica Sinica, 2019, 77(1): 15-27. ]
[22] 曹越, 赵琳娜, 巩远发, 等. ECMWF高分辨率模式降水预报能力评估与误差分析[J]. 暴雨灾害, 2019, 38(3): 249-258.
  [Cao Yue, Zhao Linna, Gong Yuanfa, et al. Evaluation and error analysis of precipitation forecast capability of the ECMWF high-resolution model[J]. Torrential Rain and Disasters, 2019, 38(3): 249-258. ]
[23] 胡嘉缨, 董春卿, 操俊伟. 山西复杂地形下CMA-MESO 3 km系统降水预报检验及订正[J]. 暴雨灾害, 2023, 42(4): 384-394.
  [Hu Jiaying, Dong Chunqing, Cao Junwei. Assessment and correction of precipitation forecast with the CMA-MESO 3 km model under the complex terrain in Shanxi Province[J]. Torrential Rain and Disasters, 2023, 42(4): 384-394. ]
[24] 张武龙, 康岚, 周威, 等. 基于GRAPES-MESO模式的极端短时强降水预报[J]. 干旱气象, 2021, 39(3): 507-513.
  [Zhang Wulong, Kang Lan, Zhou Wei, et al. Extreme short-time heavy precipitation forecast based on GRAPES-MESO model[J]. Journal of Arid Meteorology, 2021, 39(3): 507-513. ]
[25] 李钰春, 喻琴昆, 何巍. 基于SAL方法对四川盆地一次区域性暴雨过程多模式预报空间检验[J]. 高原山地气象研究, 2022, 42(增刊2): 67-71.
  [Li Yuchun, Yu Qinkun, He Wei. Quantitative verification for multi-model forecast of a regional heavy rain process in Sichuan Basin based on SAL[J]. Plateau and Mountain Meteorology Research, 2022, 42(Suppl. 2): 67-71. ]
[26] 李涛, 陈杰, 汪方, 等. 一种基于神经网络的中国区域夏季降水预测订正算法[J]. 干旱气象, 2022, 40(2): 308-316.
  [Li Tao, Chen Jie, Wang Fang, et al. A correction algorithm of summer precipitation prediction based on neural network in China[J]. Arid Meteorology, 2022, 40(2): 308-316. ]
[27] 曹萍萍, 肖递祥, 龙柯吉, 等. 基于分位数映射法的四川省ECMWF模式降水预报误差订正分析[J]. 干旱气象, 2023, 41(4): 666-675.
  [Cao Pingping, Xiao Dixiang, Long Keji, et al. Deviation correction of precipitation forecast by ECMWF model based on quantile mapping method in Sichuan Province[J]. Journal of Arid Meteorology, 2023, 41(4): 666-675. ]
[28] 曾晓青, 汤浩, 张俊兰, 等. ECMWF的QPF短期预报性能在新疆的评估[J]. 沙漠与绿洲气象, 2021, 15(4): 50-57.
  [Zeng Xiaoqing, Tang Hao, Zhang Junlan, et al. Forecast performance evaluation of QPF from ECMWF in Xinjiang[J]. Desert and Oasis Meteorology, 2021, 15(4): 50-57. ]
[29] 唐冶, 李如琦, 张萌, 等. DOGRAFS逐小时气温和降水预报的释用[J]. 沙漠与绿洲气象, 2021, 15(4): 100-106.
  [Tang Ye, Li Ruqi, Zhang Meng, et al. Study on the interpretation and application method of hourly temperature and precipitation forecast based on DOGRAFS[J]. Desert and Oasis Meteorology, 2021, 15(4): 100-106. ]
[30] 郑博华, 李斌, 黄秋霞, 等. 新疆伊犁河谷冷暖季降水时空分布特征[J]. 沙漠与绿洲气象, 2019, 13(3): 80-87.
  [Zheng Bohua, Li Bing, Huang Qiuxia, et al. Diurnal variation characteristics of precipitation in the cold and warm season of Ili River Valley, Xinjiang[J]. Desert and Oasis Meteorology, 2019, 13(3): 80-87. ]
[31] 李炳元, 潘保田, 韩嘉福. 中国陆地基本地貌类型及其划分指标探讨[J]. 第四纪研究, 2008, 28(4): 535-543.
  [Li Bingyuan, Pan Baotian, Han Jiafu. Basic terrestrial geomorphological types in China and their circumscriptions[J]. Quaternary Sciences, 2008, 28(4): 535-543. ]
[32] 庄晓翠, 赵江伟, 李博渊, 等. 伊犁河谷暴雪过程水汽特征[J]. 沙漠与绿洲气象, 2023, 17(2): 15-25.
  [Zhuang Xiaocui, Zhao Jiangwei, Li Boyuan, et al. Characteristics of water vapor during blizzard in Ili Valley[J]. Desert and Oasis Meteorology, 2023, 17(2): 15-25. ]
[33] 张家宝, 苏起元, 孙沈清, 等. 新疆短期天气预报指导手册[M]. 乌鲁木齐: 新疆人民出版社, 1986.
  [Zhang Jiabao, Su Qiyuan, Sun Shenqing, et al. Guide handbook on Xinjiang short-term weather forecast[M]. Urumqi: Xinjiang People Press, 1986. ]
[34] 秦贺, 陈春艳, 阿不力米提江·阿布力克木, 等. 新疆暖季短时强降水特征[J]. 干旱区研究, 2019, 36(6): 1440-1449.
  [Qin He, Chen Chunyan, Ablikim Ablimitijan, et al. Characteristics of short-duration heavy rainfall in warm season in Xinjiang[J]. Arid Zone Research, 2019, 36(6): 1440-1449. ]
[35] 李勇, 梅双丽, 周宁芳. 1961—2020年西北地区夏季降水趋势变化特征[J]. 沙漠与绿洲气象, 2024, 18(1): 74-80.
  [Li Yong, Mei Shuangli, Zhou Ningfang. Variation characteristics of summer precipitation in northwest China from 1961 to 2020[J]. Desert and Oasis Meteorology, 2024, 18(1): 74-80. ]
[36] 谢漪云, 王建捷. GRAPES千米尺度模式在西南复杂地形区降水预报偏差与成因初探[J]. 气象学报, 2021, 79(5): 732-749.
  [Xie Yiyun, Wang Jianjie. Preliminary study on the deviation and cause of precipitation prediction of GRAPES kilometer scale model in southwest complex terrain area[J]. Acta Meteorologica Sinica, 2021, 79(5): 732-749. ]
[37] 汪小康, 崔春光, 刘柯, 等. 中国主雨季极端小时降水时空分布和日变化特征[J]. 气象, 2024, 50(4): 393-406.
  [Wang Xiaokang, Cui Chunguang, Liu Ke, et al. Spatio-temperal distribution and diurnal variation of extreme hourly precipitation in China during the main rainy season[J]. Meteorological Monthly, 2024, 50(4): 393-406. ]
[38] 齐倩倩, 朱跃建, 陈静, 等. 基于GRAPES-GFS次季节预报的误差诊断和预报能力分析[J]. 大气科学, 2022, 46(2): 327-345.
  [Qi Qianqian, Zhu Yuejian, Chen Jing, et al. Error diagnosis and assessment of sub-seasonal forecast using GRAPES-GFS model[J]. Chinese Journal of Atmospheric Sciences, 2022, 46(2): 327-345. ]
[39] 许晨璐, 王建捷, 黄丽萍. 千米尺度分辨率下GRAPES-Meso4.0模式定量降水预报性能评估[J]. 气象学报, 2017, 75(6): 851-876.
  [Xu Chenlu, Wang Jianjie, Huang Liping. Evaluation on QPF of GRAPES-Meso4.0 model at convection-permitting resolution[J]. Acta Meteorologica Sinica, 2017, 75(6): 851-876. ]
[40] 刘东海, 黄静, 刘娟, 等. 典型中尺度数值预报模式参数化方案的综述与展望[J]. 地球科学进展, 2023, 38(4): 349-362.
  [Liu Donghai, Huang Jing, Liu Juan, et al. Review and prospect of parameterization schemes of typical mesoscale numerical prediction models at home and abroad[J]. Advances in Earth Science, 2023, 38(4): 349-362. ]
[41] 蔡怡, 徐枝芳, 龚玺, 等. 2021年夏季CMA-MESO模式降水预报评估[J]. 干旱气象, 2023, 41(3): 503-515.
  [Cai Yi, Xu Zhifang, Gong Xi, et al. Evaluation of precipitation forecast of CMA-MESO model in summer of 2021[J]. Journal of Arid Meteorology, 2023, 41(3): 503-515. ]
[42] 陈昊明, 李普曦, 赵妍. 千米尺度模式降水的检验评估进展及展望[J]. 气象科技进展, 2021, 11(3): 155-164.
  [Chen Haoming, Li Puxi, Zhao Yan. A review and outlook of verification and evaluation of precipitation forecast at convection-permitting resolution[J]. Advances in Meteorological Science and Technology, 2021, 11(3): 155-164. ]
[43] Jin Q, Yang X Q, Sun X G, et al. East Asian summer monsoon circulation structure controlled by feedback of condensational heating[J]. Climate Dynamics, 2013, 41(7-8): 1885-1897.
[44] Guo Z, Zhou T, Wang M, et al. Impact of cloud radiative heating on East Asian summer monsoon circulation[J]. Environmental Research Letters, 2015, 10(7): 074014, doi: 10.1088/1748-9326/10/7/074014.
Outlines

/