The Third Xinjiang Scientific Expedition

Responses of glacier and lake to local climate change in the Jingyu Lake Basin, east Kunlun Mountains

  • CHEN Lihua ,
  • CHE Yanjun ,
  • CAO Yun ,
  • ZHANG Mingjun ,
  • GU Lailei ,
  • WU Jiakang ,
  • LYU Weiwei
Expand
  • 1. School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
    2. Department of Geographical Science, Yichun University, Yichun 336000, Jiangxi, China
    3. College of Geography and Environmental Science, Northwest Normal University, Lanzhou 730070, Gansu, China
    4. Key Laboratory of Resource Environment and Sustainable Development of Oasis, Gansu Province, Lanzhou 730070, Gansu, China

Received date: 2024-02-15

  Revised date: 2024-06-03

  Online published: 2024-11-27

Abstract

Glaciers and lakes are highly sensitive to climate change. This study examines the boundaries of glaciers and lakes in the Jingyu Lake Basin, east Kunlun Mountains from 1990 to 2023 using Landsat series imagery. In addition, the DAHITI water level dataset and the global glacier mass balance dataset were utilized to analyze changes in glacier area, volume, and mass balance, as well as the area, water level, and volume of the Jingyu Lake Basin. ERA5 meteorological reanalysis data were employed to assess the response of glaciers and lakes in the basin to climate change. The results indicate a significant expansion trend in the Jingyu Lake. From 1990 to 2023, Jingyu Lake expanded by 133.30 km2 at a rate of 4.66 km2·a-1. Between 2013 and 2023, the lake’s water level rose by 5.19 m, with an annual increase rate of 0.55 m·a-1, and its volume increased by 1.31 km3, averaging an annual increment of 0.16 km3. During the same period, the glacier area decreased by 4.59 km2 at a rate of -0.12 km2·a-1, and the glacier volume declined by 0.38 km3 at a rate of -0.01 km3·a-1. The average annual glacier mass balance from 2000 to 2020 was -1.22×10-4 m w.e. The average annual temperature in the Jingyu Lake Basin increased significantly from 1990 to 2021, with an annual warming rate of 0.02 ℃·a-1. In contrast, summer precipitation showed no significant warming trend, while the annual precipitation increased notably at a rate of 2.11 mm·a-1, with 78.9% of precipitation occurring in summer. Precipitation is identified as the primary factor contributing to lake expansion in the basin. This study highlights the response of glaciers and lakes in the Jingyu Lake Basin to climate change, providing valuable insights for local governments in optimizing water resource allocation and management.

Cite this article

CHEN Lihua , CHE Yanjun , CAO Yun , ZHANG Mingjun , GU Lailei , WU Jiakang , LYU Weiwei . Responses of glacier and lake to local climate change in the Jingyu Lake Basin, east Kunlun Mountains[J]. Arid Land Geography, 2024 , 47(10) : 1640 -1650 . DOI: 10.12118/j.issn.1000-6060.2024.092

References

[1] Yi G, Zhang T. Delayed response of lake area change to climate change in Siling Co Lake, Tibetan Plateau, from 2003 to 2013[J]. International Journal of Environmental Research and Public Health, 2015, 12(11): 13886-13900.
[2] 刘金凤, 田碧青, 吴常雪, 等. 1976—2021年纳木错和色林错湖泊面积变化及驱动因素分析[J]. 盐湖研究, 2024, 32(3): 61-68.
  [Liu Jinfeng, Tian Biqing, Wu Changxue, et al. Analysis of lake area changes and driving factors in Nam Co and Selin Co from 1976 to 2021[J]. Journal of Salt Lake Research, 2024, 32(3): 61-68.]
[3] 秦大河, 周波涛, 效存德. 冰冻圈变化及其对中国气候的影响[J]. 气象学报, 2014, 72(5): 869-879.
  [Qin Dahe, Zhou Botao, Xiao Cunde. Progress in studies of cryospheric changes and their impacts on climate of China[J]. Acta Meteorologica Sinica, 2014, 72(5): 869-879.]
[4] 孔伟明, 韦孟丹, 胡垚坤, 等. 温升背景下“亚洲水塔”流域水资源压力现状及未来预估[J]. 冰川冻土, 2024, 46(1): 1-12.
  [Kong Weiming, Wei Mengdan, Hu Yaokun, et al. Current situation and future prediction of water stress in basins around the Asian Water Tower under the background of global warming[J]. Journal of Glaciology and Geocryology, 2024, 46(1): 1-12.]
[5] 张强, 王港, 赵佳琪, 等. 亚洲水塔水循环和水资源研究进展与展望[J]. 科学通报, 2023, 68(36): 4982-4994.
  [Zhang Qiang, Wang Gang, Zhao Jiaqi, et al. Water circulation and water resources of Asia’s water tower: The past and future[J]. Chinese Science Bulletin, 2023, 68(36): 4982-4994.]
[6] Zhong L, Ma Y, Xue Y, et al. Climate change trends and impacts on vegetation greening over the Tibetan Plateau[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(14): 7540-7552.
[7] Zhang G, Yao T, Chen W, et al. Regional differences of lake evolution across China during 1960s—2015 and its natural and anthropogenic causes[J]. Remote Sensing of Environment, 2019, 221: 386-404.
[8] Zhang G, Yao T, Xie H, et al. Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms[J]. Earth-Science Reviews, 2020, 208: 103269, doi: 10.1016/j.earscirev.2020.103269.
[9] Ma R, Duan H, Hu C, et al. A half-century of changes in China’s lakes: Global warming or human influence?[J]. Geophysical Research Letters, 2010, 37(24): L24106, doi: 10.1029/2010GL045514.
[10] Immerzeel W W, Lutz A F, Andrade M, et al. Importance and vulnerability of the world’s water towers[J]. Nature, 2020, 577(7790): 364-369.
[11] 赵华秋, 王欣, 赵轩茹, 等. 2008—2018年中国冰川变化分析[J]. 冰川冻土, 2021, 43(4): 976-986.
  [Zhao Huaqiu, Wang Xin, Zhao Xuanru, et al. Analysis of glacier changes in China from 2008 to 2018[J]. Journal of Glaciology and Geocryology, 2021, 43(4): 976-986.]
[12] Dehecq A, Gourmelen N, Gardner A S, et al. Twenty-first century glacier slowdown driven by mass loss in High Mountain Asia[J]. Nature Geoscience, 2019, 12(1): 22-27.
[13] 丁悦凯, 刘睿, 张翠兰, 等. 喜马拉雅地区叶如藏布流域冰川和冰湖变化遥感监测研究[J]. 干旱区地理, 2022, 45(6): 1870-1880.
  [Ding Yuekai, Liu Rui, Zhang Cuilan, et al. Remote sensing monitoring of glacier and glacial lake changes in Yairu Zangbo Basin, Himalayas[J]. Arid Land Geography, 2022, 45(6): 1870-1880.]
[14] 汤远航, 李梦琦, 邓铃, 等. 1990—2020年朋曲流域冰川变化及其对气候变化的响应[J]. 干旱区地理, 2022, 45(1): 27-36.
  [Tang Xuanhang, Li Mengqi, Deng Ling, et al. Glacier change and its response to climate change in Pumqu Basin during 1990—2020[J]. Arid Land Geography, 2022, 45(1): 27-36.]
[15] 段安民, 肖志祥, 吴国雄. 1979—2014年全球变暖背景下青藏高原气候变化特征[J]. 气候变化研究进展, 2016, 12(5): 374-381.
  [Duan Anmin, Xiao Zhixiang, Wu Guoxiong. Characteristics of climate change over the Tibetan Plateau under the global warming during 1979—2014[J]. Climate Change Research, 2016, 12(5): 374-381.]
[16] 段建平, 王丽丽, 任贾文, 等. 近百年来中国冰川变化及其对气候变化的敏感性研究进展[J]. 地理科学进展, 2009, 28(2): 231-237.
  [Duan Jianping, Wang Lili, Ren Jiawen, et al. Progress in glacier variations in China and its sensitivity to climatic change during the past century[J]. Progress in Geography, 2009, 28(2): 231-237.]
[17] 冀琴, 张翠兰, 丁悦凯, 等. 基于多源遥感数据的珠峰自然保护区冰川监测研究[J]. 干旱区地理, 2023, 46(10): 1591-1601.
  [Ji Qin, Zhang Cuilan, Ding Yuekai, et al. Glacier monitoring in Qomolangma Nature Reserve based on multi-source remote sensing data[J]. Arid Land Geography, 2023, 46(10): 1591-1601.]
[18] 郝洁, 李靖瑄, 连子旭, 等. 青藏高原湖泊面积变化规律及影响要素分析[J]. 水文, 2024, 44(1): 112-118.
  [Hao Jie, Li Jingxuan, Lian Zixu, et al. Analysis on variation of lakes and its influencing drivers for the Qinghai-Tibet Plateau[J]. Journal of China Hydrology, 2024, 44(1): 112-118.]
[19] 车彦军, 陈丽花, 谷来磊, 等. 东昆仑木孜塔格峰地区冰湖演变与冰川物质亏损[J]. 冰川冻土, 2023, 45(4): 1254-1265.
  [Che Yanjin, Chen Lihua, Gu Lailei, et al. Evolution of glacial lakes and glacier mass loss in Ulugh Muztagh area of eastern Kunlun Mountains[J]. Journal of Glaciology and Geocryology, 2023, 45(4): 1254-1265.]
[20] 岳跃破, 程蓉蓉, 姜玉丽. 东昆仑三岔顶地区鲸鱼湖组火山岩地球化学、年代学特征及其构造意义[J]. 西部资源, 2020(5): 166-171.
  [Yue Yuepo, Cheng Rongrong, Jiang Yuli. Volcanic rock geochemical, cheonological characteristics and tectonic significance of the Jingyuhu formation in the Sanchading area of eastern Kunlun[J]. Western Resources, 2020(5): 166-171.]
[21] 涂其军, 王新昆, 杨子江, 等. 木孜塔格-鲸鱼湖地区新生代火山岩地球化学特征及其构造意义[J]. 新疆地质, 2007, 25(1): 11-17.
  [Tu Qijun, Wang Xinkun, Yang Zijiang, et al. Geochemical characteristics and tectonic significance of Cenozoic volcanic rocks in Muztag-Cetacean Lake area[J]. Xinjiang Geology, 2007, 25(1): 11-17.]
[22] 刘玉婷, 陈亚宁, 朱成刚, 等. 2003—2022年昆仑山北坡典型湖泊水位变化及其归因[J/OL]. 干旱区地理, 1-13[2024-09-21]. http://kns.cnki.net/kcms/detail/65.1103.X.20240812.1511.001.html.
  [Liu Yuting, Chen Yaning, Zhu Chenggang, et al. Water level changes and attribution of typical lakes on the northern slope of Kunlun Mountains from 2003 to 2022[J]. Arid Land Geography, 1-13[2024-09-21]. http://kns.cnki.net/kcms/detail/65.1103.X.20240812.1511.001.html.]
[23] M?lg N, Bolch T, Rastner P, et al. A consistent glacier inventory for Karakoram and Pamir derived from Landsat data: Distribution of debris cover and mapping challenges[J]. Earth System Science Data, 2018, 10(4): 1807-1827.
[24] Chander G, Markham B L, Helder D L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors[J]. Remote Sensing of Environment, 2009, 113(5): 893-903.
[25] Schwatke C, Dettmering D, Bosch W, et al. DAHITI-an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry[J]. Hydrology and Earth System Sciences, 2015, 19(10): 4345-4364.
[26] Brun F, Berthier E, Wagnon P, et al. A spatially resolved estimate of High Mountain Asia glacier mass balances from 2000 to 2016[J]. Nature Geoscience, 2017, 10(9): 668-673.
[27] Hugonnet R, McNabb R, Berthier E, et al. Accelerated global glacier mass loss in the early twenty-first century[J]. Nature, 2021, 592(7856): 726-731.
[28] Mu?oz-Sabater J, Dutra E, Agustí-Panareda A, et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications[J]. Earth System Science Data, 2021, 13(9): 4349-4383.
[29] Silverio W, Jaquet J M. Glacial cover mapping (1987—1996) of the Cordillera Blanca (Peru) using satellite imagery[J]. Remote Sensing of Environment, 2005, 95(3): 342-350.
[30] Wang L, Zhao L, Zhou H, et al. Contribution of ground ice melting to the expansion of Selin Co (lake) on the Tibetan Plateau[J]. Cryosphere, 2022, 16(7): 2745-2767.
[31] Zhang G, Chen W, Xie H. Tibetan Plateau’s lake level and volume changes from NASA’s ICESat/ICESat-2 and Landsat Missions[J]. Geophysical Research Letters, 2019, 46(22): 13107-13118.
[32] Zhang G, Yao T, Shum C K, et al. Lake volume and groundwater storage variations in Tibetan Plateau’s endorheic basin[J]. Geophysical Research Letters, 2017, 44(11): 5550-5560.
[33] Moeller M, Schneider C. Calibration of glacier volume-area relations from surface extent fluctuations and application to future glacier change[J]. Journal of Glaciology, 2010, 56(195): 33-40.
[34] Adhikari S, Marshall S J. Glacier volume-area relation for high-order mechanics and transient glacier states[J]. Geophysical Research Letters, 2012, 39(16): L16505, doi: 10.1029/2012GL052712.
[35] 高晓清, 汤懋苍, 冯松. 冰川变化与气候变化关系的若干探讨[J]. 高原气象, 2000, 19(1): 9-16.
  [Gao Xiaoqing, Tang Maocang, Feng Song. Discussion on the relationship between clacial fluctuation and climate change[J]. Plateau Meteorology, 2000, 19(1): 9-16.]
Outlines

/