Extreme climate characteristics in the Wuding River Basin based on WRF model
Received date: 2023-10-24
Revised date: 2023-12-31
Online published: 2024-09-24
There are still many uncertainties to be solved about extreme climate events in the semi-arid region of the Loess Plateau under climate change. In this study, the weather research and forecasting (WRF) model driven by the static geographical data and the final operational global analysis (FNL) global reanalysis data was used to simulate the climate of the Wuding River Basin of Shaanxi Province, China from 2011 to 2022, and the simulated results were verified using the observed data from four meteorological stations in the basin to analyze the applicability of the model. On this basis, 11 extreme weather indicators were selected, combined with Sen’s slope estimator and the Mann-Kendall (M-K) test to analyze the spatial distribution characteristics and spatiotemporal trend changes of extreme precipitation and extreme temperature at the annual and seasonal scales in the Wuding River Basin. The conclusions are as follows: (1) Extreme precipitation events in the basin are more frequent in the east than in the west, and the interannual and seasonal spatial distribution characteristics of the maximum daily precipitation (RX1day) and precipitation total (PRCPTOT) are high in the east and low in the west. (2) Extreme precipitation events in the basin will further increase, precipitation amount and intensity will further increase, but the duration of precipitation and the degree of drought will decrease, specifically reflected in increased precipitation in all seasons but decreased precipitation in autumn in the east. (3) Extreme temperature events in the basin are more frequent in the east than in the west, and the interannual and seasonal spatial distribution characteristics of the minimum temperature (TNn) and maximum temperature (TXx) are high in the east and low in the west. (4) Extreme temperature events in the basin will further increase, and the frequency of high and low temperatures and their intensity show opposite changes in the east and west directions, specifically manifested as decreased temperature in summer and increased temperature in spring.
ZHANG Shunwei , ZHOU Zixiang , XIONG Xuanchen , ZHOU Jie . Extreme climate characteristics in the Wuding River Basin based on WRF model[J]. Arid Land Geography, 2024 , 47(9) : 1482 -1495 . DOI: 10.12118/j.issn.1000-6060.2023.597
[1] | Legg S. IPCC, 2021: Climate change 2021: The physical science basis[J]. Interaction, 2021, 49(4): 44-45. |
[2] | 孙颖. 人类活动对气候系统的影响——解读IPCC第六次评估报告第一工作组报告第三章[J]. 大气科学学报, 2021, 44(5): 654-657. |
[Sun Ying. lmpact of humanactivities on climate system: An interpretation of Chapter Ⅲ of WG I report of IPCC AR6[J]. Transactions of Atmospheric Sciences, 2021, 44(5): 654-657.] | |
[3] | Thackeray C W, Deangelis A M, Hall A, et al. On the connection between global hydrologic sensitivity and regional wet extremes[J]. Geophysical Research Letters, 2018, 45(20): 11343-11351. |
[4] | Donat M G, Lowry A L, Alexander L V, et al. More extreme precipitation in the world’s dry and wet regions[J]. Nature Climate Change, 2016, 6(5): 508-513. |
[5] | Pi Y Y, Yu Y, Zhang Y Q, et al. Extreme temperature events during 1960—2017 in the arid region of northwest China: Spatiotemporal dynamics and associated large-scale atmospheric circulation[J]. Sustainability, 2020, 12(3): 1198, doi: 10.3390/su12031198. |
[6] | Wang Y J, Zhou B T, Qin D H, et al. Changes in mean and extreme temperature and precipitation over the arid region of northwestern China: Observation and projection[J]. Advances in Atmospheric Sciences, 2017, 34: 289-305. |
[7] | 曾颖婷, 陆尔. 1961—2010年我国夏季总降水和极端降水的变化[J]. 气候变化研究进展, 2015, 11(2): 79-85. |
[Zeng Yingting, Lu Er. Changes of summer rainfall and extreme precipitation during 1961—2010 in China[J]. Climate Change Research, 2015, 11(2): 79-85.] | |
[8] | 陈效逑, 刘立, 尉杨平. 1961—2005年黄河流域极端气候事件变化趋势[J]. 人民黄河, 2011, 33(5): 3-5. |
[Chen Xiaoqiu, Liu Li, Wei Yangping. Variation trend of extreme climate events of the Yellow River Basin in 1961—2005 period[J]. Yellow River, 2011, 33(5): 3-5.] | |
[9] | 任宗萍, 马勇勇, 王友胜, 等. 无定河流域不同地貌区径流变化归因分析[J]. 生态学报, 2019, 39(12): 4309-4318. |
[Ren Zongping, Ma Yongyong, Wang Yousheng, et al. Runoff changes and attribution analysis in tributaries of different geomorphic regions in Wuding River Basin[J]. Acta Ecologica Sinica, 2019, 39(12): 4309-4318.] | |
[10] | 党维勤, 郝鲁东, 高健健, 等. 基于“7·26”暴雨洪水灾害的淤地坝作用分析与思考[J]. 中国水利, 2019(8): 52-55. |
[Dang Weiqin, Hao Ludong, Gao Jianjian, et al. Roles of silt retention dam in rainstorm flood disaster on July 26[J]. China Water Resources, 2019(8): 52-55.] | |
[11] | Ahmed K, Sachindra D, Shahid S, et al. Multi-model ensemble predictions of precipitation and temperature using machine learning algorithms[J]. Atmospheric Research, 2020, 236: 104806, doi: 10.1016/j.atmosres.2019.104806. |
[12] | Yang T A, Liu J L, Chen Q Y. Assessment of plain river ecosystem function based on improved gray system model and analytic hierarchy process for the Fuyang River, Haihe River Basin, China[J]. Ecological Modelling, 2013, 268: 37-47. |
[13] | Corchado J M, Lees B. A hybrid case-based model for forecasting[J]. Applied Artificial Intelligence, 2001, 15(2): 105-127. |
[14] | 杨梅焕, 王钰尧, 王涛, 等. 西北干旱区极端降水时空变化特征及驱动因素[J]. 西安理工大学学报, 2023, 39(3): 393-403. |
[Yang Meihuan, Wang Yuyao, Wang Tao, et al. Spatiotemporal variation characteristics and driving factors of extreme precipitation in arid region of northwest China[J]. Journal of Xi’an University of Technology, 2023, 39(3): 393-403.] | |
[15] | 李军龙, 张剑, 张丛, 等. 气象要素空间插值方法的比较分析[J]. 草业科学, 2006, 23(8): 6-11. |
[Li Junlong, Zhang Jian, Zhang Cong, et al. Analyze and compare the spatial interpolation methods for climate factor[J]. Pratacultural Science, 2006, 23(8): 6-11.] | |
[16] | 林忠辉, 莫兴国, 李宏轩, 等. 中国陆地区域气象要素的空间插值[J]. 地理学报, 2002, 57(1): 47-56. |
[Lin Zhonghui, Mo Xingguo, Li Hongxuan, et al. Comparison of three spatial interpolation methods for climate variables in China[J]. Acta Geographica Sinica, 2002, 57(1): 47-56.] | |
[17] | 郭飞. 基于WRF的城市热岛效应高分辨率评估方法[J]. 土木建筑与环境工程, 2017, 39(1): 13-19. |
[Guo Fei. Assessment method of urban heat island high resolution based on WRF[J]. Journal of Civil and Environmental Engineering, 2017, 39(1): 13-19.] | |
[18] | 侯嘉琪. 基于WRF模式的中国西北地区未来气候变化预测分析[D]. 武汉: 华中农业大学, 2023. |
[Hou Jiaqi. Prediction of future climate change in northwest China based on WRF model[D]. Wuhan: Huazhong Agricultural University, 2023.] | |
[19] | Skamarock W C, Klemp J B, Dudhia J, et al. A description of the advanced research WRF Version 3[C]// NCAR/TN 475+STR. NCAR Technical Note. Colorado: Mesoscale and Microscale Meteorology Division National Center for Atmospheric Research, 2009. |
[20] | Alexander L, Herold N. ClimPACT2[M]. Sydney: The University of New South Wales, 2016: 1-46. |
[21] | 赵雪岩. 无定河流域土地利用变化方式及对径流的影响研究[D]. 咸阳: 西北农林科技大学, 2023. |
[Zhao Xueyan. Study on land use change and its impact on runoff in Wuding River Basin[D]. Xianyang: Northwest A & F University, 2023.] | |
[22] | 马伟东, 刘峰贵, 周强, 等. 1961—2017年青藏高原极端降水特征分析[J]. 自然资源学报, 2020, 35(12): 3039-3050. |
[Ma Weidong, Liu Fenggui, Zhou Qiang, et al. Characteristics of extreme precipitation over the Qinghai-Tibet Plateau from 1961 to 2017[J]. Journal of Natural Resources, 2020, 35(12): 3039-3050.] | |
[23] | 李胜利, 巩在武, 石振彬. 近50年来山东省极端降水指数变化特征分析[J]. 水土保持研究, 2016, 23(4): 120-127. |
[Li Shengli, Gong Zaiwu, Shi Zhenbin. Characteristics of change in extreme precipitation indices in Shandong Province in recent 50 years[J]. Research of Soil and Water Conservation, 2016, 23(4): 120-127.] | |
[24] | 王倩之, 刘凯, 汪明. NEX-GDDP降尺度数据对中国极端降水指数模拟能力的评估[J]. 气候变化研究进展, 2022, 18(1): 31-43. |
[Wang Qianzhi, Liu Kai, Wang Ming. Evaluation of extreme precipitation indices performance based on NEX-GDDP downscaling data over China[J]. Climate Change Research, 2022, 18(1): 31-43.] | |
[25] | 李宛鸿, 徐影. CMIP6模式对青藏高原极端气温指数模拟能力评估及预估[J]. 高原气象, 2023, 42(2): 305-319. |
[Li Wanhong, Xu Ying. Evaluation and projection of extreme temperature indices over the Qinghai-Xizang Plateau by CMlP6 models[J]. Plateau Meteorology, 2023, 42(2): 305-319.] | |
[26] | Vourlioti P, Mamouka T, Agrafiotis A, et al. Medicane ianos: 4D-var data assimilation of surface and satellite observations into the numerical weather prediction model WRF[J]. Atmosphere, 2022, 13(10): 1683, doi: 10.3390/atmos13101683. |
[27] | Fu Y Y, Zhou Z X, Li J J, et al. Impact of aerosols on NPP in basins: Case study of WRF-solar in the Jinghe River Basin[J]. Remote Sensing, 2023, 15(7): 1908, doi: 10.3390/RS15071908. |
[28] | Shirali E, Nikbakht S A, Fathian H, et al. Evaluation of WRF and artificial intelligence models in short-term rainfall, temperature and flood forecast (case study)[J]. Journal of Earth System Science, 2020, 129(1): 1-16. |
[29] | Delfino R J, Bagtasa G, Hodges K, et al. Sensitivity of simulating Typhoon Haiyan (2013) using WRF: The role of cumulus convection, surface flux parameterizations, spectral nudging, and initial and boundary conditions[J]. Natural Hazards and Earth System Sciences, 2022, 22(10): 3285-3307. |
[30] | 田磊. 变化环境下黄土高原水文气候要素数值模拟及未来预测[D]. 咸阳: 西北农林科技大学, 2019. |
[Tian Lei. Numerical simulation and future prediction of hydrological and climatic factors in the Loess Plateau under changing environment[D]. Xianyang: Northwest A & F University, 2019.] | |
[31] | 方利, 王文杰, 蒋卫国, 等. 2000—2014年黑龙江流域(中国)植被覆盖时空变化及其对气候变化的响应[J]. 地理科学, 2017, 37(11): 1745-1754. |
[Fang Li, Wang Wenjie, Jiang Weiguo, et al. Spatio-temporal variations of vegetation cover and its responses to climate change in the Heilongjiang Basin of China from 2000 to 2014[J]. Scientia Geographica Sinica, 2017, 37(11): 1745-1754.] | |
[32] | 李双双, 孔锋, 韩鹭, 等. 陕北黄土高原区极端降水时空变化特征及其影响因素[J]. 地理研究, 2020, 39(1): 140-151. |
[Li Shuangshuang, Kong Feng, Han Lu, et al. Spatiotemporal variability of extreme precipitation and influencing factors on the Loess Plateau in northern Shaanxi Province[J]. Geographical Research, 2020, 39(1): 140-151.] | |
[33] | 杨维涛, 孙建国, 康永泰, 等. 黄土高原地区极端气候指数时空变化[J]. 干旱区地理, 2020, 43(6): 1456-1466. |
[Yang Weitao, Sun Jianguo, Kang Yongtai, et al. Temporal and spatial changes of extreme weather indices in the Loess Plateau[J]. Arid Land Geography, 2020, 43(6): 1456-1466.] | |
[34] | 黎珩, 朱冰冰, 边熇, 等. 1970—2020年黄土高原水蚀风蚀交错区极端降水时空变化研究及驱动因素分析[J]. 干旱区地理, 2024, 47(4): 539-548. |
[Li Heng, Zhu Bingbing, Bian He, et al. Temporal and spatial changes of extreme precipitationand its driving factors in the water-wind erosion interlacing area of the Loess Plateau from 1970 to 2020[J]. Arid Land Geography, 2024, 47(4): 539-548.] | |
[35] | Cai Q F, Liu Y U, Fang C X, et al. Insight into spatial-temporal patterns of hydroclimate change on the Chinese Loess Plateau over the past 250 years, using new evidence from tree rings[J]. Science of the Total Environment, 2022, 850: 157960, doi: 10.1016/j.scitotenv.2022.157960. |
[36] | WMO. State of the global climate 2021: WMO provisional report[M]. Geneva: WMO, 2021: 1-4. |
[37] | Zhang P A, Sun W Y, Xiao P Q, et al. Driving factors of heavy rainfall causing flash floods in the middle reaches of the Yellow River: A case study in the Wuding River Basin, China[J]. Sustainability, 2022, 14(13): 8004, doi: 10.3390/su14138004. |
/
〈 |
|
〉 |