Ecological quality analysis of Ordos City based on the baseline remote sensing ecological index
Received date: 2023-04-13
Revised date: 2023-07-15
Online published: 2024-03-14
Ordos City is an important steppe desert and agropastoral ecotone in the Yellow River Basin, China. Studying the changes in ecological quality in Ordos City is important for supporting the ecological conservation and high-quality development of the Yellow River Basin. Herein, the remote sensing imagery of a moderate-resolution imaging spectroradiometer was used as a data source to calculate the baseline remote sensing ecological index (B_RSEI) of Ordos City by improving the conventional normalization and principal component analysis. This study also analyzes the characteristics of ecological quality changes from 2001 to 2019. The results indicate the following: (1) B_RSEI exhibits stable directionality and integrity, offering an enhanced reflection of long-term changes in ecological quality. From 2001 to 2019, B_RSEI of Ordos City showed a fluctuating increase and a spatial differentiation of higher in the east and lower in the west. (2) The surface water content index (SWCI) is the primary factor promoting B_RSEI and serves as the main factor explaining the B_RSEI distribution. The land surface temperature (LST) is the main factor inhibiting B_RSEI, with its most substantial interaction. (3) The ecological quality of Ordos City has improved, covering 67.13% of the total area, with notable ecological management effects in the Jungar Banner, Kangbashen District, and Ejin Horo Banner areas. This study demonstrates an overall improvement in the ecological quality of Ordos City, emphasizing the usefulness of B_RSEI in analyzing interannual changes. This could provide a reference for the ecological governance of the Ordos City and high-quality development of the Yellow River Basin.
Key words: ecological quality; B_RSEI; principal component analysis; Ordos City
XUE Huazhu , YUAN Qian , DONG Guotao , YAO Nan , ZHANG Qing . Ecological quality analysis of Ordos City based on the baseline remote sensing ecological index[J]. Arid Land Geography, 2024 , 47(2) : 248 -259 . DOI: 10.12118/j.issn.1000-6060.2023.162
[1] | 张春桂, 李计英. 基于3S技术的区域生态环境质量监测研究[J]. 自然资源学报, 2010, 25(12): 2060-2071. |
[ Zhang Chungui, Li Jiying. Study of regional eco-environmental quality monitoring based on 3S techniques[J]. Journal of Natural Resources, 2010, 25(12): 2060-2071. ] | |
[2] | Xu C, Dong X P, Fang X T, et al. Cloud-based storage and computing for remote sensing big data: A technical review[J]. International Journal of Digital Earth, 2022, 15(1): 1417-1445. |
[3] | Noel G, Matt H, Mike D, et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone[J]. Remote Sensing of Environment, 2017, 202: 18-27. |
[4] | Shi S H, Wang X L, Hu Z X, et al. Geographic detector-based quantitative assessment enhances attribution analysis of climate and topography factors to vegetation variation for spatial heterogeneity and coupling[J]. Global Ecology and Conservation, 2023, 42: E02398, doi: 10.1016/J.GECCO.2023.E02398. |
[5] | Yang Y P, Yang D, Wang X F, et al. Testing accuracy of land cover classification algorithms in the Qilian Mountains based on GEE cloud platform[J]. Remote Sensing, 2021, 13(24): 5064, doi: 10.3390/RS13245064. |
[6] | 王小娜, 田金炎, 李小娟, 等. Google Earth Engine云平台对遥感发展的改变[J]. 遥感学报, 2022, 26(2): 299-309. |
[ Wang Xiaona, Tian Jinyan, Li Xiaojuan, et al. Benefits of Google Earth Engine in remote sensing[J]. National Remote Sensing Bulletin, 2022, 26(2): 299-309. ] | |
[7] | 徐涵秋. 城市遥感生态指数的创建及其应用[J]. 生态学报, 2013, 33(24): 7853-7862. |
[ Xu Hanqiu. A remote sensing urban ecological index and its application[J]. Acta Ecologica Sinica, 2013, 33(24): 7853-7862. ] | |
[8] | Geng J W, Yu K Y, Xie Z, et al. Analysis of spatiotemporal variation and drivers of ecological quality in Fuzhou based on RSEI[J]. Remote Sensing, 2022, 14(19): 4900, doi: 10.3390/RS14194900. |
[9] | Yuan B D, Fu L N, Zou Y A, et al. Spatiotemporal change detection of ecological quality and the associated affecting factors in Dongting Lake Basin, based on RSEI[J]. Journal of Cleaner Production, 2021, 302: 126995, doi: 10.1016/J.JCLEPRO.2021.126995. |
[10] | 王瑾杰, 丁建丽, 张子鹏. 基于遥感生态指数的吐哈地区生态环境变化研究[J]. 干旱区地理, 2022, 45(5): 1591-1603. |
[ Wang Jinjie, Ding Jianli, Zhang Zipeng. Change of ecological environment in Turpan and Hami cities based on remote sensing ecology index[J]. Arid Land Geography, 2022, 45(5): 1591-1603. ] | |
[11] | 宋美杰, 罗艳云, 段利民. 基于改进遥感生态指数模型的锡林郭勒草原生态环境评价[J]. 干旱区研究, 2019, 36(6): 1521-1527. |
[ Song Meijie, Luo Yanyun, Duan Limin. Evalution of ecological environment in the Xilin Gol Steppe based on modified remote sensing ecological index model[J]. Arid Zone Research, 2019, 36(6): 1521-1527. ] | |
[12] | 罗镕基, 王宏涛, 王成. 基于改进遥感生态指数的甘肃省古浪县生态质量评价[J]. 干旱区地理, 2023, 46(4): 539-549. |
[ Luo Rongji, Wang Hongtao, Wang Cheng. Ecological quality evaluation of Gulang County in Gansu Province based on improved remote sensing ecological index[J]. Arid Land Geography, 2023, 46(4): 539-549. ] | |
[13] | Zheng Z H, Wu Z F, Chen Y B, et al. Instability of remote sensing based ecological index (RSEI) and its improvement for time series analysis[J]. Science of the Total Environment, 2022, 814: 152595, doi: 10.1016/J.SCITOTENV.2021.152595. |
[14] | Zhu D Y, Chen T, Zhen N, et al. Monitoring the effects of open-pit mining on the eco-environment using a moving window-based remote sensing ecological index[J]. Environmental Science and Pollution Research International, 2020, 27(13): 15716-15728. |
[15] | Cong W W, Li X Y, Pan X B, et al. A new scientific framework of dryland ecological quality assessment based on 1OAO principle[J]. Ecological Indicators, 2022, 136: 108595, doi: 10.1016/J.ECOLIND.2022.108595. |
[16] | Wang J B, Ding Y F, Wang S Q, et al. Pixel-scale historical-baseline-based ecological quality: Measuring impacts from climate change and human activities from 2000 to 2018 in China[J]. Journal of Environmental Management, 2022, 313: 114944, doi: 10.1016/J.JENVMAN.2022.114944. |
[17] | 马苏, 刘军会, 康玉麟, 等. 鄂尔多斯市防风固沙功能时空变化及驱动因素分析[J]. 环境科学研究, 2022, 35(11): 2477-2485. |
[ Ma Su, Liu Junhui, Kang Yulin, et al. Spatio-temporal changes of sand-fixing function and its driving factors in the Ordos[J]. Research of Environmental Sciences, 2022, 35(11): 2477-2485. ] | |
[18] | 黄金廷, 侯光才, 陶正平, 等. 鄂尔多斯高原植被生态分区及其水文地质意义[J]. 地质通报, 2008(8): 1330-1334. |
[ Huang Jinting, Hou Guangcai, Tao Zhengping, et al. Vegetation ecological areas of the Ordos Plateau, China and their hydrogeological significance[J]. Geological Bulletin of China, 2008(8): 1330-1334. ] | |
[19] | Peng S Z, Ding Y X, Wen Z M, et al. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011—2100[J]. Agricultural and Forest Meteorology, 2017, 233: 183-194. |
[20] | Chen J D, Gao M, Cheng S L, et al. Global 1 km×1 km gridded revised real gross domestic product and electricity consumption during 1992—2019 based on calibrated nighttime light data[J]. Scientific Data, 2022, 9(1): 202, doi: 10.1038/s41597-022-01322-5. |
[21] | 谌稳, 孙立群, 李晴岚, 等. 一种基于图论重构MODIS EVI时间序列数据集的新方法[J]. 地球信息科学学报, 2022, 24(4): 738-749. |
[ Chen Wen, Sun Liqun, Li Qinglan, et al. A new method to reconstruct MODIS EVI time series data set based on graph theory[J]. Journal of Geo-information Science, 2022, 24(4): 738-749. ] | |
[22] | 张红卫, 陈怀亮, 申双和, 等. 基于表层水分含量指数(SWCI)的土壤干旱遥感监测[J]. 遥感技术与应用, 2008, 23(6): 624-628, 600. |
[ Zhang Hongwei, Chen Huailiang, Shen Shuanghe, et al. Drought remote sensing monitoring based on the surface water content index (SWCI) method[J]. Remote Sensing Technology and Application, 2008, 23(6): 624-628, 600. ] | |
[23] | 左璐, 孙雷刚, 鲁军景, 等. 基于MODIS的京津冀地区生态质量综合评价及其时空变化监测[J]. 自然资源遥感, 2022, 34(2): 203-214. |
[ Zuo Lu, Sun Leigang, Lu Junjing, et al. MODIS-based comprehensive assessment and spatial-temporal change monitoring of ecological quality in Beijing-Tianjin-Hebei region[J]. Remote Sensing of Natural Resources, 2022, 34(2): 203-214. ] | |
[24] | 吕颖, 刘慧平, 刘锦绣. 基于中分辨率成像光谱仪数据的建筑指数研究[J]. 测绘科学, 2015, 40(5): 44-48, 70. |
[ Lü Ying, Liu Huiping, Liu Jinxiu. Study on build-up index based on MODIS data[J]. Science of Surveying and Mapping, 2015, 40(5): 44-48, 70. ] | |
[25] | Jia H, Yan C, Xing X. Evaluation of eco-environmental quality in Qaidam Basin based on the ecological index (MRSEI) and GEE[J]. Remote Sensing, 2021, 13(22): 4543, doi: 10.3390/RS13224543. |
[26] | Tellman B, Sullivan J A, Kuhn C, et al. Satellite imaging reveals increased proportion of population exposed to floods[J]. Nature, 2021, 596(7870): 80-86. |
[27] | 徐涵秋. 利用改进的归一化差异水体指数(MNDWI)提取水体信息的研究[J]. 遥感学报, 2005, 9(5): 589-595. |
[ Xu Hanqiu. A study on information extraction of water body with the modified normalized difference water index (MNDWI)[J]. National Remote Sensing Bulletin, 2005, 9(5): 589-595. ] | |
[28] | 王劲峰, 徐成东. 地理探测器: 原理与展望[J]. 地理学报, 2017, 72(1): 116-134. |
[ Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective[J]. Acta Geographica Sinica, 2017, 72(1): 116-134. ] | |
[29] | Zhang M, Kafy A, Ren B, et al. Application of the optimal parameter geographic detector model in the identification of influencing factors of ecological quality in Guangzhou, China[J]. Land, 2022, 11(8): 1303, doi: 10.3390/LAND11081303. |
[30] | 贺军奇, 魏燕, 高万德, 等. 毛乌素沙地东南缘植被NDVI时空变化及其对气候因子的响应[J]. 干旱区地理, 2022, 45(5): 1523-1533. |
[ He Junqi, Wei Yan, Gao Wande, et al. Temporal and spatial variation of vegetation NDVI and its response to climate factors in the southeastern margin of Mu Us Sandy Land[J]. Arid Land Geography, 2022, 45(5): 1523-1533. ] | |
[31] | 吴秦豫, 姚喜军, 梁洁, 等. 鄂尔多斯市煤矿区植被覆盖改善和退化效应的时空强度[J]. 干旱区资源与环境, 2022, 36(8): 101-109. |
[ Wu Qinyu, Yao Xijun, Liang Jie, et al. Spatial and temporal intensity of vegetation cover improvement and degradation in coal mining areas of Erdos City[J]. Journal of Arid Land Resources and Environment, 2022, 36(8): 101-109. ] | |
[32] | 吕妍, 王让会, 蔡子颖. 我国干旱半干旱地区气候变化及其影响[J]. 干旱区资源与环境, 2009, 23(11): 65-71. |
[ Lü Yan, Wang Ranghui, Cai Ziying. Climatic change and influence in arid and semi-arid area of China[J]. Journal of Arid Land Resources and Environment, 2009, 23(11): 65-71. ] | |
[33] | Li J Y. Responses of vegetation NDVI to climate change and land use in Ordos City, north China[J]. Applied Sciences, 2022, 12(14): 7288, doi: 10.3390/APP12147288. |
[34] | 董天, 肖洋, 张路, 等. 鄂尔多斯市生态系统格局和质量变化及驱动力[J]. 生态学报, 2019, 39(2): 660-671. |
[ Dong Tian, Xiao Yang, Zhang Lu, et al. Analysis of driving factors that influence the pattern and quality of the ecosystem in Ordos[J]. Acta Ecologica Sinica, 2019, 39(2): 660-671. ] | |
[35] | 马格. 鄂尔多斯市土地利用/覆被及植被覆盖度变化研究[D]. 呼和浩特: 内蒙古大学, 2020. |
[ Ma Ge. Study on change of land use/cover and vegetation coverage in Ordos City[D]. Hohhot: Inner Mongolia University, 2020. ] | |
[36] | 赵燕, 荆慧敏, 刘基智. 鄂尔多斯市黄河流域生态保护和高质量发展初步研究[J]. 北方经济, 2022(1): 60-64. |
[ Zhao Yan, Jing Huimin, Liu Jizhi. Preliminary study on ecological protection and high quality development of the Yellow River Basin in Ordos City[J]. Northern Economy, 2022(1): 60-64. ] |
/
〈 |
|
〉 |