Response and prediction of runoff to climate change in the headwaters of the Bortala River
Received date: 2022-10-24
Revised date: 2022-12-14
Online published: 2023-09-28
Glacial runoff is a major component of runoff in the northwest arid zone of China. Understanding the impact of climate change on glacial runoff is crucial, but few studies have been conducted in this field of study in the Bortala River Basin, Xinjiang, China. In this paper, we present the glacier module that was added to the SWAT model and used to simulate monthly runoff in the headwater area of the upper Bortala River Basin. We successfully simulated monthly runoff at the Wenquan hydrological station during the period 1972—2018. Further, we investigated the impact of future climate change scenarios (RCP4.5 and RCP8.5 scenarios for 2020—2050, based on CMIP5 climate data) on glacier runoff. The model was able to accurately simulate changes in the source area’s runoff process. The results showed that: For the whole simulation period, the Nash-Sutcliffe efficiency was 0.82, the percent bias was -3.22%, the ratio of root mean square error to standard deviation of measured value was 0.42, and the coefficient of determination was 0.84, thus allowing the model to be rated as “excellent”. Increasing runoff trends were identified in the simulations of both future climate scenarios, with total runoff increases of 0.31×108 m3·(10a)-1 and 0.40×108 m3·(10a)-1 and increases in the percentage of glacial runoff of 4.84% and 9.38%, respectively, when compared with the historical period, in which the glacial runoff percentage was 27.61%. These increases in glacial runoff percentage are the main causes of the increases in runoff volume. Correlation analysis revealed that as the temperature increases, glacier ablation advances and accelerates, and glacier accumulation time decreases, leading to further future shrinking of glacier area. The study provides a basis for making changes to historical hydrological information, exploring future evolutionary trends, and mitigating potential climate change risks in the region.
Haowei TIAN , Fulong CHEN , Aihua LONG , Jing LIU , Yang HAI . Response and prediction of runoff to climate change in the headwaters of the Bortala River[J]. Arid Land Geography, 2023 , 46(9) : 1432 -1442 . DOI: 10.12118/j.issn.1000-6060.2022.555
[1] | 姜大膀, 王娜. IPCC AR6报告解读:水循环变化[J]. 气候变化研究进展, 2021, 17(6): 699-704. |
[1] | [Jiang Dabang, Wang Na. Water cycle changes: Interpretation of IPCC AR6[J]. Climate Change Research, 2021, 17(6): 699-704.] |
[2] | 陈亚宁, 李稚, 方功焕. 中亚天山地区关键水文要素变化与水循环研究进展[J]. 干旱区地理, 2022, 45(1): 1-8. |
[2] | [Chen Yaning, Li Zhi, Fang Gonghuan. Changes of key hydrological elements and research progress of water cycle in the Tianshan Mountains, Central Asia[J]. Arid Land Geography, 2022, 45(1): 1-8.] |
[3] | 王文, 马骏. 若干水文预报方法综述[J]. 水利水电科技进展, 2005(1): 56-60. |
[3] | [Wang Wen, Ma Jun. Review on some methods for hydrological forecasting[J]. Advances in Science and Technology of Water, 2005(1): 56-60.] |
[4] | 雷晓辉, 王浩, 廖卫红, 等. 变化环境下气象水文预报研究进展[J]. 水利学报, 2018, 49(1): 9-18. |
[4] | [Lei Xiaohui, Wang Hao, Liao Weihong, et al. Advance in hydro-meteorological forecast under changing environment[J]. Journal of Hydraulic Engineering, 2018, 49(1): 9-18.] |
[5] | 史晓亮, 杨志勇, 严登华, 等. 滦河流域土地利用/覆被变化的水文响应[J]. 水科学进展, 2014, 25(1): 21-27. |
[5] | [Shi Xiaoliang, Yang Zhiyong, Yan Denghua, et al. On hydrological response to land-use/cover change in Luanhe River Basin[J]. Advances in Water Science, 2014, 25(1): 21-27.] |
[6] | 包鑫, 江燕. 半干旱半湿润地区流域非点源污染负荷模型研究进展[J]. 应用生态学报, 2020, 31(2): 674-684. |
[6] | [Bao Xin, Jiang Yan. Research progress on non-point source pollution models for semi-arid and semi-humid watersheds[J]. Chinese Journal of Applied Ecology, 2020, 31(2): 674-684.] |
[7] | Fabre C, Sauvage S, Tananaev N, et al. Assessment of sediment and organic carbon exports into the Arctic Ocean: The case of the Yenisei River Basin[J]. Water Research, 2019, 158: 118-135. |
[8] | 孙占东, 黄群. 长江流域土地利用/覆被变化的大尺度水文效应[J]. 长江流域资源与环境, 2019, 28(11): 2703-2710. |
[8] | [Sun Zhandong, Huang Qun. Land use-cover change and its large scale hydrological effects in Yangtze River Basin[J]. Resources and Environment in the Yangtze Basin, 2019, 28(11): 2703-2710.] |
[9] | 周帅, 王义民, 郭爱军, 等. SWAT模型参数不确定性对黄河上游径流模拟的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(8): 144-154. |
[9] | [Zhou Shuai, Wang Yimin, Guo Aijun, et al. Influence of uncertainties in SWAT model parmeters on runoff simulation in upper reaches of the Yellow River[J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(8): 144-154.] |
[10] | Avellaneda P M, Ficklin D L, Lowry C S, et al. Improving hydrological models with the assimilation of crowdsourced data[J]. Water Resources Research, 2020, 56(5): e2019WR026325, doi: 10.1029/2019WR026325. |
[11] | 任才, 龙爱华, 於嘉闻, 等. 气候与下垫面变化对叶尔羌河源流径流的影响[J]. 干旱区地理, 2021, 44(5): 1373-1383. |
[11] | [Ren Cai, Long Aihua, Yu Jiawen, et al. Effects of climate and underlying surface changes on runoff of Yarkant River source[J]. Arid Land Geography, 2021, 44(5): 1373-1383.] |
[12] | Shukla S, Jain S K, Kansal M L. Hydrological modelling of a snow/glacier-fed western Himalayan Basin to simulate the current and future streamflows under changing climate scenarios[J]. Science of the Total Environment, 2021, 795, doi: 10.1016/J.SCITOTENV.2021.148871. |
[13] | Cao Y, Fu C S, Wang X, et al. Decoding the dramatic hundred-year water level variations of a typical great lake in semi-arid region of northeastern Asia[J]. Science of the Total Environment, 2021, 770, doi: 10.1016/J.SCITOTENV.2021.145353. |
[14] | Zhao H L, Li H Y, Xuan Y Q, et al. Improvement of the SWAT model for snowmelt runoff simulation in seasonal snowmelt area using remote sensing data[J]. Remote Sensing, 2022, 14(22): 5823, doi: 10.3390/RS14225823. |
[15] | 杨明智, 许继军, 桑连海, 等. 基于水循环的分布式水资源调配模型开发与应用[J]. 水利学报, 2022, 53(4): 456-470. |
[15] | [Yang Mingzhi, Xu Jijun, Sang Lianhai, et al. Development and application of the distributed water resources allocation and regulation model based on hydrological cycle[J]. Journal of Hydraulic Engineering, 2022, 53(4): 456-470.] |
[16] | Yin Z L, Feng Q, Liu S Y, et al. The spatial and temporal contribution of glacier runoff to watershed discharge in the Yarkant River Basin, northwest China[J]. Water, 2017, 9(3): 159, doi: 10.3390/w9030159. |
[17] | 孟现勇, 王浩, 雷晓辉, 等. 基于CMDAS驱动SWAT模式的精博河流域水文相关分量模拟、验证及分析[J]. 生态学报, 2017, 37(21): 7114-7127. |
[17] | [Meng Xianyong, Wang Hao, Lei Xiaohui, et al. Simulation, validation, and analysis of the hydrological components of Jing and Bo River Basin based on the SWAT model driven by CMADS[J]. Acta Ecologica Sinica, 2017, 37(21): 7114-7127.] |
[18] | 王瑾杰, 丁建丽, 张喆, 等. 干旱区降雨、融雪混合补给下的径流模拟研究——以博尔塔拉河上游流域为例[J]. 干旱区地理, 2016, 39(6): 1238-1246. |
[18] | [Wang Jinjie, Ding Jianli, Zhang Zhe, et al. Simulation of runoff of arid area with rainfall and snowmelt based on GF-1 satellite: A case of Bortala River[J]. Arid Land Geography, 2016, 39(6): 1238-1246.] |
[19] | 张飞, 王维维, 辛红云, 等. 新疆艾比湖流域河湖水质变化(2005—2020年)[J]. 湖泊科学, 2022, 34(2): 478-495. |
[19] | [Zhang Fei, Wang Weiwei, Xin Hongyun, et al. Changes of river and lakes water quality in Lake Ebinur Basin, Xinjiang (2005—2020)[J]. Journal of Lake Sciences, 2022, 34(2): 478-495.] |
[20] | 丁启振, 雷米, 周金龙, 等. 博尔塔拉河上游河谷地区水化学特征及水质评价[J]. 干旱区研究, 2022, 39(3): 829-840. |
[20] | [Ding Qizhen, Lei Mi, Zhou Jinlong, et al. An assessment of groundwater, surface water, and hydrochemical characteristics in the upper valley of the Bortala River[J]. Arid Zone Research, 2022, 39(3): 829-840.] |
[21] | 刘世薇, 周华荣, 梁雪琼, 等. 艾比湖流域降水与径流变化特征分析[J]. 水土保持学报, 2011, 25(5): 21-25. |
[21] | [Liu Shiwei, Zhou Huarong, Liang Xueqiong, et al. Trend analysis of the precipitation and runoff in Ebinur Lake Basin[J]. Journal of Soil and Water Conservation, 2011, 25(5): 21-25.] |
[22] | 郝帅, 李发东, 李艳红, 等. 艾比湖流域降水、地表水和地下水稳定同位素特征[J]. 干旱区地理, 2021, 44(4): 934-942. |
[22] | [Hao Shuai, Li Fadong, Li Yanhong, et al. Stable isotopes characteristics of precipitation, surface water and groundwater in Ebinur Lake Basin[J]. Arid Land Geography, 2021, 44(4): 934-942.] |
[23] | 甘容, 徐孟莎, 左其亭. 伊洛河流域基流分割及其时空变化特征[J]. 资源科学, 2022, 44(9): 1824-1834. |
[23] | [Gan Rong, Xu Mengsha, Zuo Qiting. Baseflow separation and spatiotemporal variation characteristics in the Yiluo River Basin[J]. Resources Science, 2022, 44(9): 1824-1834.] |
[24] | 张田田, 陈有超, 李潜, 等. 土地利用变化对丹江流域径流和泥沙时空格局的影响[J]. 长江流域资源与环境, 2022, 31(8): 1797-1811. |
[24] | [Zhang Tiantian, Chen Youchao, Li Qian, et al. Effects of land-use change on the spatio-temporal patterns of runoff and sediment in the Danjiang River Basin[J]. Resources and Environment in the Yangtze Basin, 2022, 31(8): 1797-1811.] |
[25] | 侯玥, 徐成东, 刘伟, 等. 气候变化情景下淮河上游流域氮排放预测研究[J]. 地球信息科学学报, 2022, 24(8): 1558-1574. |
[25] | [Hou Yue, Xu Chengdong, Liu Wei, et al. Prediction of nitrogen emission in the upper reaches of the Huai River Basin under climate change scenarios[J]. Journal of Geo-information Science, 2022, 24(8): 1558-1574.] |
[26] | 孙瑞, 张雪芹. 基于SWAT模型的流域径流模拟研究进展[J]. 水文, 2010, 30(3): 28-32, 47. |
[26] | [Sun Rui, Zhang Xueqin. Progress in application of watershed runoff simulation based on SWAT[J]. Journal of China Hydrology, 2010, 30(3): 28-32, 47.] |
[27] | 魏潇娜, 龙爱华, 尹振良, 等. 和田河流域冰川径流对气候变化响应的模拟分析[J]. 水资源保, 2022, 38(4): 137-144. |
[27] | [Wei Xiaona, Long Aihua, Yin Zhenliang, et al. Simulation of response of glacier runoff to climate change in the Hotan River Basin[J]. Water Resources Protection, 2022, 38(4): 137-144.] |
[28] | Liu J, Long A H, Deng X Y, et al. The impact of climate change on hydrological processes of the glacierized watershed and projections[J]. Remote Sensing, 2022, 14(6): 1314, doi: 10.3390/rs14061314. |
[29] | Moriasi D N, Arnold J G, Liew M, et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations[J]. Transactions of the ASABE, 2007, 50(3): 855-900. |
[30] | Mehrotra R, Sharma A. A robust alternative for correcting systematic biases in multi-variable climate model simulations[J]. Environmental Modelling and Software, 139, 105019, doi:10.1016/j.envsoft.2021.105019. |
[31] | 吴佳, 周波涛, 徐影. 中国平均降水和极端降水对气候变暖的响应: CMIP5模式模拟评估和预估[J]. 地球物理学报, 2015, 58(9): 3048-3060. |
[31] | [Wu Jia, Zhou Botao, Xu Ying. Response of precipitation and its extremes over China to warming: CMIP5 simulation and projection[J]. Chinese Journal of Geophysics, 2015, 58(9): 3048-3060.] |
[32] | 马占云, 任佳雪, 陈海涛, 等. IPCC第一工作组评估报告分析及建议[J]. 环境科学研究, 2022, 35(11): 2550-2558. |
[32] | [Ma Zhanyun, Ren Jiaxue, Chen Haitao, et al. Analysis and recommendations of IPCC working group I assessment report[J]. Research of Environmental Sciences, 2022, 35(11): 2550-2558.] |
[33] | Zhang Q, Yang J H, Wang W, et al. Climatic warming and humidification in the arid region of northwest China: Multi-scale characteristics and impacts on ecological vegetation[J]. Journal of Meteorological Research, 2021, 35(1): 113-127. |
[34] | 迪丽努尔·阿吉, 近藤昭彦, 肖開提·阿吉, 等. 博河流域气候变化及其与径流量的关系研究[J]. 资源科学, 2014, 36(10): 2123-2130. |
[34] | [Aji Dilinuer, Akihiko Kondoh, Aji Xiaokaiti, et al. Climatic change in the Bortala River Basin and runoff volume[J]. Resources Science, 2014, 36(10): 2123-2130.] |
[35] | Kraaijenbrink P D A, Bierkens M F P, Lutz A F, et al. Impact of a global temperature rise of 1.5 degrees Celsius on Asia’s glaciers[J]. Nature, 2017, 549(7671): 257-260. |
[36] | 曾庆江. 博尔塔拉谷地对径流的调节作用[J]. 干旱区地理, 1994, 17(4): 9-14. |
[36] | [Zeng Qingjiang. Regulation of Bortala valley on runoff[J]. Arid Land Geography, 1994, 17(4): 9-14.] |
[37] | 赵求东, 赵传成, 秦艳, 等. 天山南坡高冰川覆盖率的木扎提河流域水文过程对气候变化的响应[J]. 冰川冻土, 2020, 42(4): 1285-1298. |
[37] | [Zhao Qiudong, Zhao Chuancheng, Qin Yan, et al. Response of the hydrological processes to climate change in the Muzati River Basin with high glacierization, southern slope of the Tianshan Mountains[J]. Journal of Glaciology and Geocryology, 2020, 42(4): 1285-1298.] |
/
〈 |
|
〉 |