Spatial and temporal patterns of agricultural low-carbon productivity and its influence effects in the counties of Tarim River Basin, Xinjiang
Received date: 2022-07-16
Revised date: 2022-08-18
Online published: 2023-07-24
Improving low-carbon productivity in agriculture is an effective path to ensure ecological priority and food security in arid areas. In this study, a super-efficient SBM model based on nonexpected output is used to measure the agricultural low-carbon productivity of 42 counties (cities) in the Tarim River Basin of Xinjiang, China from 2000 to 2020. The model uses trend surface analysis and spatial autocorrelation to portray the spatial and temporal characteristics of agricultural low-carbon productivity at the county scale, and constructs a spatial Durbin model and a geographic detector to reveal the spillover effects of influencing variables and spatial heterogeneity. The results show that: (1) The low-carbon productivity of agriculture in the Tarim River Basin shows a “W-shaped” stage, with a concave decreasing pattern of “downstream-upstream-midstream” between counties, and a spatial clustering. (2) Mechanization intensity and farmers’ income level have significant positive spillover effects on low-carbon productivity in county agriculture; population urbanization has significant negative spillover effects on low-carbon productivity in county agriculture; industrialization level and financial support to agriculture have significant negative direct effects on low-carbon productivity in agriculture; and the spillover effects of economic development level and per capita production scale are not significant. (3) The interaction type of the low-carbon productivity impact variables in county agricultural shows an enhanced type in general, implying the trend that low-carbon productivity in county agriculture is increasingly influenced by multiple variables. Therefore, it is important to explore the spatial and temporal patterns of low-carbon productivity in county agriculture and the influencing factors to achieve a coordinated development of low-carbon agriculture in the Tarim River Basin and even in Xinjiang.
Jiawei MU , Baorong QIAO , Guoxin YU . Spatial and temporal patterns of agricultural low-carbon productivity and its influence effects in the counties of Tarim River Basin, Xinjiang[J]. Arid Land Geography, 2023 , 46(6) : 968 -981 . DOI: 10.12118/j.issn.1000-6060.2022.358
[1] | 夏四友, 赵媛, 许昕, 等. 近20年来中国农业碳排放强度区域差异、时空格局及动态演化[J]. 长江流域资源与环境, 2020, 29(3): 596-608. |
[1] | [Xia Siyou, Zhao Yuan, Xu Xin, et al. Regional inequality, spatial-temporal pattern and dynamic evolution of carbon emission intensity from agriculture in China in the period of 1997-2016[J]. Resources and Environment in the Yangtze Basin, 2020, 29(3): 596-608.] |
[2] | 田成诗, 陈雨. 中国省际农业碳排放测算及低碳化水平评价--基于衍生指标与TOPSIS法的运用[J]. 自然资源学报, 2021, 36(2): 395-410. |
[2] | [Tian Chengshi, Chen Yu. China’s provincial agricultural carbon emissions measurement and low carbonization level evaluation: Based on the application of derivative indicators and TOPSIS[J]. Journal of Natural Resources, 2021, 36(2): 395-410.] |
[3] | 樊胜根. 中国农业生产与生产率的增长新的测算方法及结论[J]. 农业技术经济, 1998(4): 27-35. |
[3] | [Fan Shenggen. A new method and conclusion for measuring the growth of agricultural production and productivity in China[J]. Agricultural Technology and Economics, 1998(4): 27-35.] |
[4] | 新疆维吾尔自治区统计局. 新疆统计年鉴[M]. 北京: 中国统计出版社, 2019: 12-18. |
[4] | [Xinjiang Uygur Autonomous Region Bureau of Statistics. Xinjiang statistical yearbook[M]. Beijing: China Statistics Press, 2019: 12-18.] |
[5] | 鲍超, 徐牧天. 西北地区投入产出效率的综合测度与时空变化[J]. 干旱区地理, 2021, 44(6): 1772-1783. |
[5] | [Bao Chao, Xu Mutian. Comprehensive measurement and spatiotemporal variations of input-output efficiency in northwest China[J]. Arid Land Geography, 2021, 44(6): 1772-1783.] |
[6] | 田云, 林子娟. 中国省域农业碳排放效率与经济增长的耦合协调[J]. 中国人口·资源与环境, 2022, 32(4): 13-22. |
[6] | [Tian Yun, Lin Zijuan. Coupling coordination between agricultural carbon emission efficiency and economic growth at provincial level in China[J]. China Population, Resources and Environment, 2022, 32(4): 13-22.] |
[7] | 王钰凯, 郭辉. 新疆旅游业生态效率时空分异与收敛性研究[J]. 干旱区地理, 2022, 45(4): 1320-1331. |
[7] | [Wang Yukai, Guo Hui. Spatial and temporal differentiation and convergence studies of the eco-efficiency of Xinjiang tourism industry[J]. Arid Land Geography, 2022, 45(4): 1320-1331.] |
[8] | 董红敏, 李玉娥, 陶秀萍, 等. 中国农业源温室气体排放与减排技术对策[J]. 农业工程学报, 2008, 24(10): 269-273. |
[8] | [Dong Hongmin, Li Yu’e, Tao Xiuping, et al. China greenhouse gas emissions from agricultural activities and its mitigation strategy[J]. Transactions of the CSAE, 2008, 24(10): 269-273.] |
[9] | 闵继胜, 胡浩. 中国农业生产温室气体排放量的测算[J]. 中国人口·资源与环境, 2012, 22(7): 21-27. |
[9] | [Min Jisheng, Hu Hao. Calculation of greenhouse gases emission from agricultural production in China[J]. China Population, Resources and Environment, 2012, 22(7): 21-27.] |
[10] | 李远玲, 王金龙, 杨伶. 基于县域尺度的湖南省农业碳排放时空特征分析[J]. 中国农业资源与区划, 2022, 43(4): 75-84. |
[10] | [Li Yuanling, Wang Jinlong, Yang Ling. Study on temporal and apatlal characteristics of agricultural carbon emissions in Hunan Province at county scale[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2022, 43(4): 75-84.] |
[11] | 程琳琳, 张俊飚, 田云, 等. 中国省域农业碳生产率的空间分异特征及依赖效应[J]. 资源科学, 2016, 38(2): 276-289. |
[11] | [Cheng Linlin, Zhang Junbiao, Tian Yun, et al. Spatially divergent characteristics and dependence effects of agricultural carbon productivity in Chinese provinces[J]. Resource Science, 2016, 38(2): 276-289.] |
[12] | 黄景裕, 尧波, 胡启武, 等. 鄱阳湖生态经济区农作物生产碳效率的时空变化[J]. 中国生态农业学报, 2014, 22(10): 1231-1239. |
[12] | [Huang Jingyu, Yao Bo, Hu Qiwu, et al. Spatio-temporal variations in carbon efficiency of crops in Poyang Lake eco-economic region[J]. Chinese Journal of Eco-Agriculture, 2014, 22(10): 1231-1239.] |
[13] | Smith P, Smith J U, Andren O, et al. Carbon sequestration potential in European croplands has been overestimated[J]. Global Change Biology, 2010, 11(12): 2153-2163. |
[14] | Ajzen I, Fishbein M. The prediction of behavior from attitudinal and normative variables[J]. Journal of Experimental Social Psychology, 1970, 6(4): 466-487. |
[15] | Johnson M F, Franzluebbers A J, Weyers S L, et al. Agricultural opportunities to mitigate greenhouse gas emissions[J]. Environmental Pollution, 2007, 150(1): 107-124. |
[16] | 田云, 张俊飚. 中国农业碳排放、低碳农业生产率及其协调性研究[J]. 中国农业大学学报, 2017, 22(5): 208-218. |
[16] | [Tian Yun, Zhang Junbiao. Agricultural carbon emissions, low carbon agricultural productivity and their coordination relation in China[J]. Journal of China Agricultural University, 2017, 22(5): 208-218.] |
[17] | 钱丽, 肖仁桥, 陈忠卫. 碳排放约束下中国省际农业生产效率及其影响因素研究[J]. 经济理论与经济管理, 2013(9): 100-112. |
[17] | [Qian Li, Xiao Renqiao, Chen Zhongwei. Research on China’s provincial agricultural production efficiency and its influencing factors under the constraint of carbon dioxide emission[J]. Economic Theory and Economic Management, 2013(9): 100-112.] |
[18] | 许波, 卢召艳, 杨胜苏, 等. 湖南省农业生产效率演变与影响因素[J]. 经济地理, 2022, 42(3): 141-149. |
[18] | [Xu Bo, Lu Zhaoyan, Yang Shengsu, et al. Spatio-temporal evolution pattern and influencing factors of agricultural production efficiency in Hunan Province[J]. Economic Geography, 2022, 42(3): 141-149.] |
[19] | 刘海英, 杨明, 王殿武. 绿色技术创新促进碳生产率提高的作用机制--基于工业结构升级、循环农业发展和交通运输替代的中介效应分析[J]. 科技管理研究, 2022, 42(10): 194-201. |
[19] | [Liu Haiying, Yang Ming, Wang Dianwu. Impact mechanism of green technology innovation on carbon productivity promotion: Based on the mediating effect analysis of industrial structure upgrading, circular agriculture development and transportation substitution[J]. Science and Technology Management Research, 2022, 42(10): 194-201.] |
[20] | 程琳琳, 张俊飚, 何可. 多尺度城镇化对农业碳生产率的影响及其区域分异特征研究--基于SFA、E指数与SDM的实证[J]. 中南大学学报(社会科学版), 2018, 24(5): 107-116. |
[20] | [Cheng Linlin, Zhang Junbiao, He Ke. Study on the impact of multi-dimensional urbanization on agricultural carbon productivity and its regional differentiation: An empirical study based on SFA, entropy index and SDM[J]. Journal of Central South University (Social Sciences Edition), 2018, 24(5): 107-116.] |
[21] | 张哲晰, 穆月英. 产业集聚能提高农业碳生产率吗?[J]. 中国人口·资源与环境, 2019, 29(7): 57-65. |
[21] | [Zhang Zhexi, Mu Yueying. Can industrial agglomeration improve agricultural carbon productivity?[J]. China Population, Resources and Environment, 2019, 29(7): 57-65.] |
[22] | 宋博, 穆月英, 侯玲玲. 农户专业化对农业低碳化的影响研究--来自北京市蔬菜种植户的证据[J]. 自然资源学报, 2016, 31(3): 468-476. |
[22] | [Song Bo, Mu Yueying, Hou Lingling. Study on the effect of farm households’ specialization on low-carbon agriculture: Evidence from vegetable growers in Beijing, China[J]. Journal of Natural Resources, 2016, 31(3): 468-476.] |
[23] | 李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解[J]. 中国人口·资源与环境, 2011, 21(8): 80-86. |
[23] | [Li Bo, Zhang Junbiao, Li Haipeng. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China[J]. China Population, Resources and Environment, 2011, 21(8): 80-86.] |
[24] | 崔叶辰, 韩亚丽, 吕宁, 等. 基于超效率SBM模型的农业生态效率测度[J]. 统计与决策, 2020, 36(21): 87-90. |
[24] | [Cui Yechen, Han Yali, Lü Ning, et al. Agro-ecological efficiency measurement based on super-efficient SBM model[J]. Statistics and Decision Making, 2020, 36(21): 87-90.] |
[25] | 汪亚琴, 姚顺波, 侯孟阳, 等. 基于地理探测器的中国农业生态效率时空分异及其影响因素[J]. 应用生态学报, 2021, 32(11): 4039-4049. |
[25] | [Wang Yaqin, Yao Shunbo, Hou Mengyang, et al. Spatial-temporal differentiation and its influencing factors of agricultural eco-efficiency in China based on geographic detector[J]. Chinese Journal of Applied Ecology, 2021, 32(11): 4039-4049.] |
[26] | 尹旭, 王婧, 李裕瑞, 等. 中国乡镇人口分布时空变化及其影响因素[J]. 地理研究, 2022, 41(5): 1245-1261. |
[26] | [Yin Xu, Wang Jing, Li Yurui, et al. Spatio-temporal evolution and driving factors of Chinese population at town level[J]. Geographical Research, 2022, 41(5): 1245-1261.] |
[27] | Tone K. A slacks-based measure of efficiency in data envelopment analysis[J]. European Journal of Operational Research, 2001, 130(3): 498-509. |
[28] | Zhang Y, Geng W L, Zhang P Y, et al. Dynamic changes, spatiotemporal differences and factors influencing the urban eco-efficiency in the lower reaches of the Yellow River[J]. International Journal of Environmental Research and Public Health, 2020, 20(17): 7510, doi: 10.3390/ijerph17207510. |
/
〈 |
|
〉 |