Climate and Environment Change

Advance in the studies of responses of alpine lakes to climate change

  • Fei HAN ,
  • Tie LIU ,
  • Yue HUANG ,
  • Chanjuan ZAN
Expand
  • 1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2. State Key Laboratory of Remote Sensing and Geographic Information System Application, Urumqi 830011, Xinjiang, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2022-05-06

  Revised date: 2022-09-13

  Online published: 2023-03-14

Abstract

As the main carrier of alpine freshwater ecosystems, alpine lakes are currently experiencing rapid climate change that has profound and complex effects on their ecosystems. In this study, we systematically analyze the effects of altitude-dependent warming on the thermal properties, dissolved oxygen stratification, and biological processes of alpine lakes in the context of climate change, describe the adaptation measures of alpine aquatic organisms and changes in underwater radiation characteristics in the context of radiation enhancement, and reveal the effects of precipitation changes on the cross-ecosystem material subsidies and biogeochemical cycles in alpine lakes, as well as the mechanism of the impact of precipitation changes on these cross-ecosystem material subsidies and biogeochemical cycles in mountain lakes. In the future research, we must improve the integrated response experiments of lake habitats under the changes of multiple climate factors, strengthen the systematic monitoring and integration of the whole elements of alpine lake ecosystems, and change the research type (i.e., static and qualitative research to process, dynamic, and quantitative research) to enhance knowledge on the response mechanism of alpine lake ecosystems to global climate change.

Cite this article

Fei HAN , Tie LIU , Yue HUANG , Chanjuan ZAN . Advance in the studies of responses of alpine lakes to climate change[J]. Arid Land Geography, 2023 , 46(2) : 233 -242 . DOI: 10.12118/j.issn.1000-6060.2022.200

References

[1] Rosenzweig C, Karoly D, Vicarelli M, et al. Attributing physical and biological impacts to anthropogenic climate change[J]. Nature, 2008, 453(7193): 353-357.
[2] Li J, Thompson D, Li J, et al. Widespread changes in surface temperature persistence under climate change[J]. Nature, 2021, 599(7885): 425, doi: 10.1038/s41586-021-03943-z.
[3] Moser K, Baron J, Brahney J, et al. Mountain lakes: Eyes on global environmental change[J]. Global and Planetary Change, 2019, 178: 77-95.
[4] Schertzer W M, Croley T E. Climate change impact on hydrology and lake thermal structure[C]//Wang S S Y, Carstens T. Environmental and Coastal Hydraulics:Protecting the Aquatic Habitat. Virginia: ASCE, 1997: 919-924.
[5] Woolway R, Merchant C, Van Den Hoek J, et al. Northern hemisphere atmospheric stilling accelerates lake thermal responses to a warming world[J]. Geophysical Research Letters, 2019, 46(21): 11983-11992.
[6] Dudgeon D, Arthington A, Gessner M, et al. Freshwater biodiversity: Importance, threats, status and conservation challenges[J]. Biological Reviews, 2006, 81(2): 163-182.
[7] Masson D V, Zhai P, Pirani A, et al. Climate change 2021: The physical science basis in contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge: Cambridge University Press, 2021.
[8] 周天军, 陈梓明, 陈晓龙, 等. IPCC AR6报告解读: 未来的全球气候——基于情景的预估和近期信息[J]. 气候变化研究进展, 2021, 17(6): 652-663.
[8] [Zhou Tianjun, Chen Ziming, Chen Xiaolong, et al. Interpreting IPCC AR6: Future global climate based on projection under scenarios and on near-term information[J]. Climate Change Research, 2021, 17(6): 652-663.]
[9] 石广玉, 王标, 张华, 等. 大气气溶胶的辐射与气候效应[J]. 大气科学, 2008, 32(4): 826-840.
[9] [Shi Guangyu, Wang Biao, Zhang Hua, et al. The radiative and climatic effects of atmospheric aersols[J]. Chinese Journal of Atmospheric Sciences, 2008, 32(4): 826-840.]
[10] Blumthaler M, Ambach W, Rehwald W. Solar UV-a and UV-b radiation fluxes at two alpine stations at different altitudes[J]. Theoretical & Applied Climatology, 1992, 46(1): 39-44.
[11] Skjelkvale B, Wright R, Skjelkvale B, et al. Mountain lakes; sensitivity to acid deposition and global climate change[J]. Ambio, 1998, 27(4): 280-286.
[12] Rangwala I, Miller J, Rangwala I, et al. Climate change in mountains: A review of elevation-dependent warming and its possible causes[J]. Climatic Change, 2012, 114(3): 527-547.
[13] Rangwala I, Miller J, Rangwala I, et al. Twentieth century temperature trends in Colorado’s San Juan Mountains[J]. Arctic Antarctic and Alpine Research, 2010, 42(1): 89-97.
[14] Ceppi P, Scherrer S, Fischer A, et al. Revisiting Swiss temperature trends 1959—2008[J]. International Journal of Climatology, 2012, 32(2): 203-213.
[15] O’reilly C, Sharma S, Gray D, et al. Rapid and highly variable warming of lake surface waters around the globe[J]. Geophysical Research Letters, 2015, 42(24): 10773-10781.
[16] 杨耀先, 胡泽勇, 路富全, 等. 青藏高原近60年来气候变化及其环境影响研究进展[J]. 高原气象, 2022, 41(1): 1-10.
[16] [Yang Yaoxian, Hu Zeyong, Lu Fuquan, et al. Progress of recent 60 years’ climate change and its environmental impacts on Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2022, 41(1): 1-10.]
[17] 杜娟, 文莉娟, 苏东生. 青藏高原不同深度湖泊无冰期湖气温差及湖表辐射与能量平衡特征模拟分析[J]. 高原气象, 2020, 39(6): 1181-1194.
[17] [Du Juan, Wen Lijuan, Su Dongsheng. Analysis of simulated temperature difference between lake surface and air and energy balance of three alpine lakes with different depths on the Qinghai-Xizang Plateau during the ice-free period[J]. Plateau Meteorology, 2020, 39(6): 1181-1194.]
[18] 张运林. 气候变暖对湖泊热力及溶解氧分层影响研究进展[J]. 水科学进展, 2015, 26(1): 130-139.
[18] [Zhang Yunlin. Effect of climate warming on lake thermal and dissolved oxygen stratifications: A review[J]. Advances in Water Science, 2015, 26(1): 130-139.]
[19] Swierczynski T, Lauterbach S, Dulski P, et al. Mid- to late Holocene flood frequency changes in the northeastern alps as recorded in varved sediments of lake Mondsee (upper Austria)[J]. Quaternary Science Reviews, 2013, 80: 78-90.
[20] Wagner C, Adrian R. Consequences of changes in thermal regime for plankton diversity and trait composition in a polymictic lake: A matter of temporal scale[J]. Freshwater Biology, 2011, 56(10): 1949-1961.
[21] Coats R, Perez L J, Schladow G, et al. The warming of lake Tahoe[J]. Climatic Change, 2006, 76(1): 121-148.
[22] Wilhelm S, Adrian R, Wilhelm S, et al. Impact of summer warming on the thermal characteristics of a polymictic lake and consequences for oxygen, nutrients and phytoplankton[J]. Freshwater Biology, 2008, 53(2): 226-237.
[23] Jankowski T, Livingstone D, Buhrer H, et al. Consequences of the 2003 European heat wave for lake temperature profiles, thermal stability, and hypolimnetic oxygen depletion: Implications for a warmer world[J]. Limnology and Oceanography, 2006, 51(2): 815-819.
[24] 张晨, 来世玉, 高学平, 等. 气候变化对湖库水环境的潜在影响研究进展[J]. 湖泊科学, 2016, 28(4): 691-700.
[24] [Zhang Chen, Lai Shiyu, Gao Xueping, et al. A review of the potential impacts of climate change on water environment in lakes and reservoirs[J]. Journal of Lakes Sciences, 2016, 28(4): 691-700.]
[25] Komatsu E, Fukushima T, Harasawa H. A modeling approach to forecast the effect of long-term climate change on lake water quality[J]. Ecological Modelling, 2007, 209(2-4): 351-366.
[26] 董静, 高云霓, 李根保. 淡水湖泊浮游藻类对富营养化和气候变暖的响应[J]. 水生生物学报, 2016, 25(8): 1778-1971.
[26] [Dong Jing, Gao Yunni, Li Genbao. A review: Responses of phytoplankton communities to eutrophication and climate warming in freshwater lakes[J]. Acta Hydrobiologica Sinica, 2016, 25(8): 1778-1971.]
[27] Korhola A, Sorvari S, Rautio M, et al. A multi-proxy analysis of climate impacts on the recent development of subarctic lake Saanajarvi in Finnish Lapland[J]. Journal of Paleolimnology, 2002, 28(1): 59-77.
[28] 朱立平, 张国庆, 杨瑞敏, 等. 青藏高原最近40年湖泊变化的主要表现与发展趋势[J]. 中国科学院院刊, 2019, 34(11): 1254-1263.
[28] [Zhu Liping, Zhang Guoqing, Yang Ruimin, et al. Lake variations on Tibetan Plateau of recent 40 years and future changing tendency[J]. Bulletin of Chinese Academy of Sciences, 2019, 34(11): 1254-1263.]
[29] Clark M, Rose K, Levine D, et al. Predicting climate change effects on Appalachian trout: Combining GIS and individual-based modeling[J]. Ecological Applications, 2001, 11(1): 161-178.
[30] Sommaruga R. The role of solar UV radiation in the ecology of alpine lakes[J]. Journal of Photochemistry and Photobiology Biology, 2001, 62(1): 35-42.
[31] Frederick J, Slusser J, Bigelow D, et al. Annual and interannual behavior of solar ultraviolet irradiance revealed by broadband measurements[J]. Photochemistry and Photobiology, 2000, 72(4): 488-496.
[32] Valkama E, Kivimaenpaa M, Hartikainen H, et al. The combined effects of enhanced UV-B radiation and selenium on growth, chlorophyll fluorescence and ultrastructure in strawberry (Fragaria x- ananassa) and barley (Hordeum vulgare) treated in the field[J]. Agricultural and Forest Meteorology, 2003, 120(1): 267-278.
[33] 王锦旗, 郑有飞, 薛艳, 等. 紫外辐射对水生生物的影响研究进展[J]. 生态学杂志, 2015, 34(1): 263-273.
[33] [Wang Jinqi, Zheng Youfei, Xue Yan, et al. Review of the effects of ultraviolet radiation on aquatic organisms[J]. Chinese Journal of Ecology, 2015, 34(1): 263-273.]
[34] Williamson C, Salm C, Cooke S, et al. How do UV radiation, temperature, and zooplankton influence the dynamics of alpine phytoplankton communities?[J]. Hydrobiologia, 2010, 648(1): 73-81.
[35] Saros J, Interlandi S, Doyle S, et al. Are the deep chlorophyll maxima in alpine lakes primarily induced by nutrient availability, not UV avoidance?[J]. Arctic Antarctic and Alpine Research, 2005, 37(4): 557-563.
[36] Ficek D, Dera J, Wozniak B, et al. UV absorption reveals mycosporine-like amino acids (maas) in Tatra Mountain lake phytoplankton[J]. Oceanologia, 2013, 55(3): 599-609.
[37] Tartarotti B, Trattner F, Remias D, et al. Distribution and UV protection strategies of zooplankton in clear and glacier-fed alpine lakes[J]. Scientific Reports, 2017, 7(1): 1-14.
[38] Tartarotti B, Sommaruga R, Tartarotti B, et al. Seasonal and ontogenetic changes of mycosporine-like amino acids in planktonic organisms from an alpine lake[J]. Limnology and Oceanography, 2006, 51(3): 1530-1541.
[39] Delgado M J, Carrillo P, Medina S J, et al. Interactive effects of phosphorus loads and ambient ultraviolet radiation on the algal community in a high-mountain lake[J]. Journal of Plankton Research, 2009, 31(6): 619-634.
[40] Carrillo P, Delgado M J, Medina-sanchez J, et al. Phosphorus inputs unmask negative effects of ultraviolet radiation on algae in a high mountain lake[J]. Global Change Biology, 2008, 14(2): 423-439.
[41] Korbee N, Carrillo P, Mata M, et al. Effects of ultraviolet radiation and nutrients on the structure-function of phytoplankton in a high mountain lake[J]. Photochemical & Photobiological Sciences, 2012, 11(6): 1087-1098.
[42] Pakker H, Martins R, Boelen P, et al. Effects of temperature on the photoreactivation of ultraviolet-b induced DNA damage in Palmaria palmata (Rhodophyta)[J]. Journal of Phycology, 2000, 36(2): 334-341.
[43] Hader D, Sinha R, Hader D, et al. Solar ultraviolet radiation-induced DNA damage in aquatic organisms: Potential environmental impact[J]. Mutation Research-fundamental and Molecular Mechanisms of Mutagenesis, 2005, 571(1): 221-233.
[44] Yoon J, Lee C, O’connor T, et al. The DNA damage spectrum produced by simulated sunlight[J]. Journal of Molecular Biology, 2000, 299(3): 681-693.
[45] Tartarotti B, Saul N, Chakrabarti S, et al. UV-induced DNA damage in cyclops abyssorum tatricus populations from clear and turbid alpine lakes[J]. Journal of Plankton Research, 2014, 36(2): 557-566.
[46] Tucker A, Williamson C, Rose K, et al. Ultraviolet radiation affects invasibility of lake ecosystems by warm-water fish[J]. Ecology, 2010, 91(3): 882-890.
[47] Fischer J, Olson M, Theodore N, et al. Diel vertical migration of copepods in mountain lakes: The changing role of ultraviolet radiation across a transparency gradient[J]. Limnology and Oceanography, 2015, 60(1): 252-262.
[48] Rhode S, Pawlowski M, Tollrian R, et al. The impact of ultraviolet radiation on the vertical distribution of zooplankton of the genus Daphnia[J]. Nature, 2001, 412(6842): 69-72.
[49] Orfeo M, Ventura M, Tartarotti B, et al. Body distribution and source of mycosporine-like amino acids in the cyclopoid copepod cyclops abyssorum tatricus[J]. Journal of Plankton Research, 2011, 33(9): 1430-1444.
[50] Laurion I, Lami A, Sommaruga R, et al. Distribution of mycosporine-like amino acids and photoprotective carotenoids among freshwater phytoplankton assemblages[J]. Aquatic Microbial Ecology, 2002, 26(3): 283-294.
[51] Woolway R, Kraemer B, Lenters J, et al. Global lake responses to climate change[J]. Nature Reviews Earth & Environment, 2020, 1(8): 388-403.
[52] Vincent W F, Belzile C, Vincent W, et al. Biological UV exposure in the polar oceans: Arctic-Antarctic comparisons[C]// HuiskesA H L, RozemaJ, SchornoR M L, et al. Antarctic Biology in a Global Context. Leiden: Backhuys Publishers, 2003: 176-181.
[53] Olson M, Fischer J, Williamson C, et al. Landscape-scale regulators of water transparency in mountain lakes: Implications of projected glacial loss[J]. Canadian Journal of Fisheries and Aquatic Sciences, 2018, 75(7): 1169-1176.
[54] 张茜, 段克勤. 基于WRF模拟的2017年帕米尔高原降水特征分析[J]. 干旱区地理, 2021, 44(6): 1707-1716.
[54] [Zhang Qian, Duan Keqin. Characteristics of precipitation in the Pamirs in 2017 based on WRF simulation[J]. Arid Land Geography, 2021, 44(6): 1707-1716.]
[55] Mladenov N, Williams M, Schmidt S, et al. Atmospheric deposition as a source of carbon and nutrients to an alpine catchment of the Colorado Rocky Mountains[J]. Biogeosciences, 2012, 9(8): 3337-3355.
[56] Jimenez L, Ruhland K, Jeziorski A, et al. Climate change and Saharan dust drive recent cladoceran and primary production changes in remote alpine lakes of Sierra Nevada, Spain[J]. Global Change Biology, 2018, 24(1): 139-158.
[57] Catalan J, Ventura M, Brancelj A, et al. Seasonal ecosystem variability in remote mountain lakes: Implications for detecting climatic signals in sediment records[J]. Journal of Paleolimnology, 2002, 28(1): 25-46.
[58] Elser J, Kyle M, Steger L, et al. Nutrient availability and phytoplankton nutrient limitation across a gradient of atmospheric nitrogen deposition[J]. Ecology, 2009, 90(11): 3062-3073.
[59] Seitzinger S P, Sanders R W. Atmospheric inputs of dissolved organic nitrogen stimulate estuarine bacteria and phytoplankton[J]. Limnology and Oceanography, 1999, 44(3): 721-730.
[60] Cochlan W, Herndon J, Kudela R, et al. Inorganic and organic nitrogen uptake by the toxigenic diatom Pseudo-nitzschia australis (Bacillariophyceae)[J]. Harmful Algae, 2008, 8(1): 111-118.
[61] Liu X, Zhang Y, Han W, et al. Enhanced nitrogen deposition over China[J]. Nature, 2013, 494(7438): 459-462.
[62] Brahney J, Ballantyne A, Kociolek P, et al. Ecological changes in two contrasting lakes associated with human activity and dust transport in western Wyoming[J]. Limnology and Oceanography, 2015, 60(2): 678-695.
[63] Sickman J, Melack J, Clow D. Evidence for nutrient enrichment of high-elevation lakes in the Sierra Nevada, California[J]. Limnology and Oceanography, 2003, 48(5): 1885-1892.
[64] Saros J, Interlandi S, Wolfe A, et al. Recent changes in the diatom community structure of lakes in the Beartooth Mountain Range, USA[J]. Arctic Antarctic and Alpine Research, 2003, 35(1): 18-23.
[65] Jones K, Devoogt P, Jones K, et al. Persistent organic pollutants (pops): State of the science[J]. Environmental Pollution, 1999, 100(1): 209-221.
[66] Vives I, Grimalt J, Fernandez P, et al. Polycyclic aromatic hydrocarbons in fish from remote and high mountain lakes in Europe and Greenland[J]. Science of the Total Environment, 2004, 324(1): 67-77.
[67] Vives I, Grimalt J, Catalan J, et al. Influence of altitude and age in the accumulation of organochlorine compounds in fish from high mountain lakes[J]. Environmental Science & Technology, 2004, 38(3): 690-698.
[68] Cheng H, Lin T, Zhang G, et al. DDTs and HCHs in sediment cores from the Tibetan Plateau[J]. Chemosphere, 2014, 94: 183-189.
[69] Lei Y, Wania F, Lei Y, et al. Is rain or snow a more efficient scavenger of organic chemicals?[J]. Atmospheric Environment, 2004, 38(22): 3557-3571.
[70] 谢婷, 张淑娟, 杨瑞强. 偏远高山湖泊沉积物中持久性有机污染物的沉积记录研究[J]. 环境化学, 2014, 33(10): 1791-1801.
[70] [Xie Ting, Zhang Shujuan, Yang Ruiqiang. Research progress on the sedimentary records of persistent organic pollutants (POPs) in remote high mountain lakes[J]. Environmental Chemistry, 2014, 33(10): 1791-1801.]
Outlines

/