Response analysis and modeling of microwave dielectric properties of typical saline soil in Xinjiang
Received date: 2022-01-10
Revised date: 2022-03-13
Online published: 2022-10-20
Soil salinization negatively affects regional economic and ecologically sustainable development. Due to the unique arid climate conditions in Xinjiang, China, there are many varieties of saline soils that are widely distributed across the region. Currently, researchers have proposed many models to describe the relationship between the dielectric constant of soil samples and the soil moisture content. However, it is still difficult to establish a model that describes the soil salt dielectric properties, which can also clarify the response relationship between dielectric constant and salt contents. In order to explore the influence of soil salinity on the dielectric properties of soil, two typical saline soil types (sulfate-chloride type,
Shuang ZHAO , Jianli DING , Lijing HAN , Shuai HUANG , Xiangyu GE . Response analysis and modeling of microwave dielectric properties of typical saline soil in Xinjiang[J]. Arid Land Geography, 2022 , 45(5) : 1534 -1546 . DOI: 10.12118/j.issn.1000-6060.2022.015
[1] | Lasne Y, Paillou P, Freeman A, et al. Effect of salinity on the dielectric properties of geological materials: Implication for soil moisture detection by means of radar remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(6): 1674-1688. |
[2] | 丁建丽, 姚远, 王飞. 干旱区土壤盐渍化特征空间建模[J]. 生态学报, 2014, 34(16): 4620-4631. |
[2] | [Ding Jianli, Yao Yuan, Wang Fei. Detecting soil salinization in arid regions using spectral feature space derived from remote sensing data[J]. Acta Ecologica Sinica, 2014, 34(16): 4620-4631. ] |
[3] | Machado R M A, Serralheiro R P. Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization[J]. Horticulturae, 2017, 3(2): 30, doi: 10.3390/horticulturae3020030. |
[4] | 杨劲松. 中国盐渍土研究的发展历程与展望[J]. 土壤学报, 2008, 45(5): 837-845. |
[4] | [Yang Jingsong. Development and prospect of the research on salt-affected soils in China[J]. Acta Pedologica Sinica, 2008, 45(5): 837-845. ] |
[5] | 田长彦, 周宏飞, 刘国庆. 21世纪新疆土壤盐渍化调控与农业持续发展研究建议[J]. 干旱区地理, 2000, 23(2): 177-181. |
[5] | [Tian Changyan, Zhou Hongfei, Liu Guoqing. The proposal on control of soil salinizing and agricultural sustaining developing 21th century in Xinjiang[J]. Arid Land Geography, 2000, 23(2): 177-181. ] |
[6] | 施建成, 杜阳, 杜今阳, 等. 微波遥感地表参数反演进展[J]. 中国科学: 地球科学, 2012, 42(6): 814-842. |
[6] | [Shi Jiancheng, Du Yang, Du Jinyang, et al. Progresses on microwave remote sensing of land surface parameters[J]. Scientia Sinica (Terrae), 2012, 42(6): 814-842. ] |
[7] | 张滢, 丁建丽, 周鹏. 干旱区土壤水分微波遥感反演算法综述[J]. 干旱区地理, 2011, 34(4): 671-678. |
[7] | [Zhang Ying, Ding Jianli, Zhou Peng. Model algorithm of soil moisture retrieval base on microwave remote sensing in arid regions[J]. Arid Land Geography, 2011, 34(4): 671-678. ] |
[8] | 王学, 刘全明, 屈忠义, 等. 盐渍化土壤水分微波雷达反演与验证[J]. 农业工程学报, 2017, 33(11): 108-114. |
[8] | [Wang Xue, Liu Quanming, Qu Zhongyi, et al. Inversion and verification of salinity soil moisture using microwave radar[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(11): 108-114. ] |
[9] | 陈全, 周忠发, 王玲玉, 等. 基于多时相Sentinel-1 SAR数据的喀斯特石漠化区地表土壤水分反演研究[J]. 红外与毫米波学报, 2020, 39(5): 626-634. |
[9] | [Chen Quan, Zhou Zhongfa, Wang Lingyu, et al. Surface soil moisture retrieval using multi-temporal Sentinel-1 SAR data in karst rocky desertification area[J]. Journal of Infrared and Millimeter Waves, 2020, 39(5): 626-634. ] |
[10] | Zeng L, Shi Q Y, Guo K, et al. A three-variables cokriging method to estimate bare-surface soil moisture using multi-temporal, VV-polarization synthetic-aperture radar data[J]. Hydrogeology Journal, 2020, 28(6): 2129-2139. |
[11] | Wang J R, Schmugge T J. An empirical model for the complex dielectric permittivity of soils as a function of water content[J]. IEEE Transactions on Geoscience and Remote Sensing, 1980, GE-18(4): 288-295. |
[12] | Dobson M C, Ulaby F T, Hallikainen M T, et al. Microwave dielectric behavior of wet soil-part II: Dielectric mixing models[J]. IEEE Transactions on Geoscience and Remote Sensing, 1985, GE-23(1): 35-46. |
[13] | Mironov V L, Kosolapova L G, FominS V. Physically and mineralogically based spectroscopic dielectric model for moist soils[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(7): 2059-2070. |
[14] | Mccoll K A, Ryu D, Matic V, et al. Soil salinity impacts on L-band remote sensing of soil moisture[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(2): 262-266. |
[15] | Hoa P V, Giang N V, Binh N A, et al. Soil salinity mapping using SAR sentinel-1 data and advanced machine learning algorithms: A case study at Ben Tre Province of the Mekong River Delta (Vietnam)[J]. Remote Sensing, 2019, 11(2): 128, doi: 10.3390/rs11020128. |
[16] | 邵芸, 吕远, 董庆, 等. 含水含盐土壤的微波介电特性分析研究[J]. 遥感学报, 2002, 6(6): 416-423. |
[16] | [Shao Yun, Lü Yuan, Dong Qing, et al. Study on soil microwave dielectric characteristic as salinity and water content[J]. National Remote Sensing Bulletin, 2002, 6(6): 416-423. ] |
[17] | Ding J L, Yang S T, Shi Q, et al. Using apparent electrical conductivity as indicator for investigating potential spatial variation of soil salinity across seven oases along Tarim River in southern Xinjiang, China[J]. Remote Sensing, 2020, 12(16): 2601, doi: 10.3390/rs12162601. |
[18] | Zhang F, Tiyip T, Ding J L, et al. Studies on the reflectance spectral features of saline soil along the middle reaches of Tarim River: A case study in Xinjiang Autonomous Region, China[J]. Environmental Earth Sciences, 2013, 69(8): 2743-2761. |
[19] | Han L J, Ding J L, Zhang J Y, et al. Precipitation events determine the spatiotemporal distribution of playa surface salinity in arid regions: Evidence from satellite data fused via the enhanced spatial and temporal adaptive reflectance fusion model[J]. Catena, 2021, 206: 105546, doi: 10.1016/j.catena.2021.105546. |
[20] | 曹肖奕, 丁建丽, 葛翔宇, 等. 基于不同卫星光谱模拟的土壤电导率估算研究[J]. 干旱区地理, 2020, 43(1): 172-181. |
[20] | [Cao Xiaoyi, Ding Jianli, Ge Xiangyu, et al. Estimation of soil conductivity based on spectral simulation of different satellites[J]. Arid Land Geography, 2020, 43(1): 172-181. ] |
[21] | 赵明亮, 李艳红, 王盼盼, 等. 艾比湖湿地湖周典型植物群落下土壤沙化盐化特征研究[J]. 干旱环境监测, 2015, 29(4): 145-151. |
[21] | [Zhao Mingliang, Li Yanhong, Wang Panpan, et al. Researching on characteristics of soil salinization and desertification in Ebinur Lake wetland around the lake under the typical plant community[J]. Arid Environmental Monitoring, 2015, 29(4): 145-151. ] |
[22] | 张瑜斌, 邓爱英, 庄铁诚, 等. 潮间带土壤盐度与电导率的关系[J]. 生态环境, 2003, 12(2): 164-165. |
[22] | [Zhang Yubin, Deng Aiying, Zhuang Tiecheng, et al. Relation between soil salinity in intertidal zone and electric conductivity[J]. Ecology and Environment, 2003, 12(2): 164-165. ] |
[23] | 全国土壤普查办公室. 中国土壤普查技术[M]. 北京: 农业出版社, 1992: 144-145. |
[23] | [National Soil Census Office. Soil census technology in China[M]. Beijing: Agriculture Press, 1992: 144-145. ] |
[24] | Coşkun M, Polat Ö, Coşkun F M, et al. The electrical modulus and other dielectric properties by the impedance spectroscopy of LaCrO3 and LaCr0.90Ir0.10O3 perovskites[J]. RSC Advances, 2018, 8(9): 4634-4648. |
[25] | Liaw A, Wiener M. Classification and regression by randomforest[J]. R news, 2002, 2(3): 18-22. |
[26] | 包青岭, 丁建丽, 王敬哲, 等. 基于随机森林算法的土壤有机质含量高光谱检测[J]. 干旱区地理, 2019, 42(6): 1404-1414. |
[26] | [Bao Qingling, Ding Jianli, Wang Jingzhe, et al. Hyperspectral detection of soil organic matter content based on Random forest algorithm[J]. Arid Land Geography, 2019, 42(6): 1404-1414. ] |
[27] | Menze B H, Kelm B M, Masuch R, et al. A comparison of Random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data[J]. BMC Bioinformatics, 2009, 10: 213, doi: 10.1186/1471-2105-10-213. |
[28] | Bellon-Maurel V, Fernandez-Ahumada E, Palagos B, et al. Critical review of chemometric indicators commonly used for assessing the quality of the prediction of soil attributes by NIR spectroscopy[J]. TrAC Trends in Analytical Chemistry, 2010, 29(9): 1073-1081. |
[29] | 赵贵章, 徐远志, 乔翠平, 等. 介质含水量与介电常数模型影响因素分析[J]. 工程勘察, 2018, 46(7): 55-61. |
[29] | [Zhao Guizhang, Xu Yuanzhi, Qiao Cuiping, et al. Factor analysis on model of relations between water content and dielectric constant[J]. Geotechnical Investigation & Surveying, 2018, 46(7): 55-61. ] |
[30] | 胡庆荣. 含水含盐土壤介电特性实验研究及对雷达图像的响应分析[D]. 北京: 中国科学院遥感应用研究所, 2003. |
[30] | [Hu Qingrong. Studies on microwave dielectric behavior of moist salt soil and its effect on backscattering coefficients extracted from radar image[D]. Beijing: Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, 2003. ] |
[31] | 丁艳玲, 刘宝江, 李洋洋. L波段对不同盐类土壤的微波介电特性分析[J]. 地球信息科学学报, 2012, 14(3): 376-381. |
[31] | [Ding Yanling, Liu Baojiang, Li Yangyang. Study on microwave dielectric properties of different salt soils at L-band[J]. Journal of Geo-information Science, 2012, 14(3): 376-381. ] |
[32] | 李洋洋. 集成光学与微波遥感苏打盐碱地水盐含量反演方法研究[D]. 长春: 中国科学院东北地理与农业生态研究所, 2014. |
[32] | [Li Yangyang. The reversal method study to moisture content and salinity of soda saline-alkaline soil by integrating optics and microwave remote sensing[D]. Changchun: Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 2014. ] |
[33] | 宫燕, 刘宝江, 宋开山. 盐渍土土壤溶液1.43 GHz复介电常数计算模型的构建与检验[J]. 土壤与作物, 2020, 9(1): 83-93. |
[33] | [Gong Yan, Liu Baojiang, Song Kaishan. Construction and verification of the complex dielectric constant calculation model in saline soil solution at 1.43 GHz[J]. Soils and Crops, 2020, 9(1): 83-93. ] |
[34] | Szypłowska A, Lewandowski A, Jones S B, et al. Impact of soil salinity, texture and measurement frequency on the relations between soil moisture and 20?MHz-3?GHz dielectric permittivity spectrum for soils of medium texture[J]. Journal of Hydrology, 2019, 579: 124-155. |
[35] | 熊文成, 邵芸. 氯化钠盐土壤介电虚部特性的初步研究[J]. 遥感学报, 2006, 2: 279-286. |
[35] | [Xiong Wencheng, Shao Yun. Model for imaginary part of dielectric constant of NaCl soil[J]. National Remote Sensing Bulletin, 2006, 2: 279-286. ] |
[36] | 潘金梅, 张立新, 吴浩然, 等. 土壤有机物质对土壤介电常数的影响[J]. 遥感学报, 2012, 16(1): 1-24. |
[36] | [Pan Jinmei, Zhang Lixin, Wu Haoran, et al. Effect of soil organic substance on soil dielectric constant[J]. National Remote Sensing Bulletin, 2012, 16(1): 1-24. ] |
[37] | 许景辉, 赵钟声, 王一琛, 等. 基于双线性理论的土壤介电测量研究[J]. 农业机械学报, 2019, 50(12): 322-331. |
[37] | [Xu Jinghui, Zhao Zhongsheng, Wang Yichen, et al. Soil dielectric measurement based on bilinear theory[J]. Transactions of the Chinese Society of Agricultural Machinery, 2019, 50(12): 322-331. ] |
[38] | Hallikainen M T, Ulaby F T, Dobson M C, et al. Microwave dielectric behavior of wet soil part 1: Empirical models and experimental observations[J]. IEEE Transactions on Geoscience and Remote Sensing, 1985, GE-23(1): 25-34. |
[39] | Wu Y R, Wang W Z, Zhao S J, et al. Dielectric properties of saline soils and an improved dielectric model in C-band[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 440-452. |
[40] | Mavrovic A, Pardo Lara R, Berg A, et al. Soil dielectric characterization during freeze-thaw transitions using L-band coaxial and soil moisture probes[J]. Hydrology and Earth System Sciences, 2021, 25(3): 1117-1131. |
/
〈 | 〉 |