Climate Change

Effects of two uncertainty sources on drought index of SPEI and on drought assessment

  • Rucun HAN ,
  • Ying ZHANG ,
  • Zhanling LI
Expand
  • 1. School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
    2. Shouguang Water Conservancy Bureau, Shouguang 262700, Shandong, China

Received date: 2021-11-22

  Revised date: 2022-03-17

  Online published: 2022-10-20

Abstract

Drought issues are becoming more frequent and persistent due to global warming, and the impact range is gradually expanding. Notably, drought monitoring, assessment, and research generally use drought indices. However, during their calculation processes, the sample, probability distribution function models, and parameters influence these indices leading to uncertainties in the drought assessment results. Therefore, this study investigated the influence of probability distribution function models and parameter estimation errors on the drought index-standardized precipitation evapotranspiration index (SPEI) and characteristics (drought intensity, peak, and duration) based on the SPEI in the Heihe River Basin in China as the study area. The results reveal that the two sources of the uncertainties, probability distribution function models, and parameter estimations, affected the drought index SPEI and assessment. Additionally, the results show that the more extreme the drought index SPEI is, the greater their effects, with both having a much greater impact on extreme and severe drought than on mild and moderate drought. The probability distribution function models resulted in more significant uncertainty in the drought intensity and peak of the extreme and severe droughts compared to the parameter estimation errors, which caused greater uncertainty in the drought duration in both drought conditions. Therefore, the study’s results can support the accurate assessment of drought and theoretically facilitate more accurate and effective decisions in drought prevention and mitigation efforts to avoid possible inadequacies in the mitigation capacity or waste of drought-resistant resources.

Cite this article

Rucun HAN , Ying ZHANG , Zhanling LI . Effects of two uncertainty sources on drought index of SPEI and on drought assessment[J]. Arid Land Geography, 2022 , 45(5) : 1392 -1401 . DOI: 10.12118/j.issn.1000-6060.2021.552

References

[1] 金令, 王永芳, 郭恩亮, 等. 基于SPEIbase v.2.6数据集的内蒙古旱灾危险性评价[J]. 干旱区地理, 2022, 45(3): 695-705.
[1] [Jin Ling, Wang Yongfang, Guo Enliang, et al. Evaluation of drought hazards in Inner Mongolia based on SPEIbase v.2.6 dataset[J]. Arid Land Geography, 2022, 45(3): 695-705. ]
[2] 洪兴骏, 郭生练. 长江上游水文干旱评估及其不确定性分析[J]. 中国防汛抗旱, 2018, 28(10): 14-20.
[2] [Hong Xingjun, Guo Shenglian. Hydrological drought assessment and uncertainty analysis for the upper Yangtze River[J]. China Flood & Drought Management, 2018, 28(10): 14-20. ]
[3] 张瑞涵, 王义民, 郭爱军. 样本不确定性对基于SPI干旱评估的影响[J]. 西北农林科技大学学报(自然科学版), 2019, 47(11): 134-142, 154.
[3] [Zhang Ruihan, Wang Yimin, Guo Aijun. Impact of sample uncertainty on SPI index based drought evaluation[J]. Journal of Northwest A & F University (Natural Science Edition), 2019, 47(11): 134-142, 154. ]
[4] Guttman N B. Accepting the standardized precipitation index: A calculation algorithm[J]. Journal of the American Water Resources Association, 1999, 35(2): 311-322.
[5] 洪兴骏, 郭生练, 周研来. 标准化降水指数SPI分布函数的适用性研究[J]. 水资源研究, 2013, 2(1): 33-41.
[5] [Hong Xingjun, Guo Shenglian, Zhou Yanlai. Applicability of standardized precipitation index with alternative distribution functions[J]. Journal of Water Resources Research, 2013, 2(1): 33-41. ]
[6] Sienz F, Bothe O, Fraedrich K. Monitoring and quantifying future climate projections of dryness and wetness extremes: SPI bias[J]. Hydrology and Earth System Sciences, 2011, 8(6): 10635-10677.
[7] Gabriel C B, Monica C M. Inadequacy of the gamma distribution to calculate the standardized precipitation index[J]. Revista Brasileira de Engenharia Agrícola e Ambiental-Agriambi, 2015, 19(12): 1129-1135.
[8] Stagge J H, Tallaksen L M, Gudmundsson L, et al. Candidate distributions for climatological drought indices (SPI and SPEI)[J]. International Journal of Climatology, 2015, 35(13): 4027-4040.
[9] Begueria S, Vicente-Serrano S M, Reig F, et al. Standardized precipitation evapotranspiration index (SPEI) revisited: Parameter fitting, evapotranspiration models, tools, datasets and drought monitoring[J]. International Journal of Climatology, 2014, 34(10): 3001-3023.
[10] 张经天, 席海洋. 荒漠河岸林地下水位时空动态及其对地表径流的响应[J]. 干旱区地理, 2020, 43(2): 388-397.
[10] [Zhang Jingtian, Xi Haiyang. Spatiotemporal dynamics of groundwater levels in a desert riparian forest and its response to surface runoff[J]. Arid Land Geography, 2020, 43(2): 388-397. ]
[11] 任朝霞, 陆玉麒, 杨达源. 近2000年黑河流域旱涝变化研究[J]. 干旱区资源与环境, 2009, 23(4): 90-93.
[11] [Ren Chaoxia, Lu Yuqi, Yang Dayuan. Study on drought and flood changes in recent 2000 a in Heihe River Basin[J]. Journal of Arid Land Resources and Environment, 2009, 23(4): 90-93. ]
[12] 曹玲, 窦永祥, 张德玉. 气候变化对黑河流域生态环境的影响[J]. 干旱气象, 2003, 21(4): 45-49.
[12] [Cao Ling, Dou Yongxiang, Zhang Deyu. Effect of climate change on ecological environment of Heihe Field[J]. Journal of Arid Meteorology, 2003, 21(4): 45-49. ]
[13] 张莹. 两种典型气象干旱指数的不确定性分析——以黑河流域为例[D]. 北京: 中国地质大学(北京), 2020.
[13] [Zhang Ying. Uncertainty analysis of two typical meteorological drought indexes: A case study in Heihe River Basin[D]. Beijing: China University of Geosciences (Beijing), 2020. ]
[14] Feng Q, Cheng G D, Endo K N. Towards sustainable development of the environmentally degraded River Heihe Basin, China[J]. Hydrological Sciences Journal, 2001, 46(5): 647-658.
[15] 刘浏, 刘丽丽, 索滢. 近53 a黑河流域水文气象要素时空演变特征[J]. 干旱区研究, 2017, 34(3): 465-478.
[15] [ Liu Liu, Liu Lili, Suo Ying. Spatiotemporal evolution of hydro-meteorological variables in the Heihe River Basin in recent 53 years[J]. Arid Zone Research, 2017, 34(3): 465-478. ]
[16] Vicente-Serrano S M, Begueria S, Lopezmoreno J I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index[J]. Journal of Climate, 2010, 23(7): 1696-1718.
[17] Yevjevich V. An objective approach to definitions and investigations of continental hydrologic droughts[J]. Journal of Hydrology, 1969, 7(3): 353, doi: 10.1016/0022-1694(69)90110-3.
[18] Fadhilah Y, Foo H M, Jamaludin S. Rainfall characterisation by application of standardised precipitation index (SPI) in Peninsular Malaysia[J]. Theoretical & Applied Climatology, 2014, 115(3-4): 503-516.
[19] Nixon R M, Wonderling D, Grieve R D. Non-parametric methods for cost effectiveness analysis: The central limit theorem and the bootstrap compared[J]. Health Economics, 2010, 19(3): 316-333.
[20] Degeling K, Ijzerman M J, Koopman M, et al. Accounting for parameter uncertainty in the definition of parametric distributions used to describe individual patient variation in health economic models[J]. Bmc Medical Research Methodology, 2017, 17: 170, doi: 10.1186/s12874-017-0437-y.
[21] Vergni L, Di L B, Todisco F, et al. Uncertainty in drought monitoring by the standardized precipitation index: The case study of the Abruzzo region (central Italy)[J]. Theoretical and Applied Climatology, 2017, 128: 13-26.
[22] Laimighofer J, Laaha G. How standard are standardized drought indices? Uncertainty contributions for the SPI & SPEI case[J]. EGU General Assembly, 2020: EGU2020-4716, doi: 10.5194/egusphere-egu2020-4716.
[23] Zhang Y, Li Z. Uncertainty analysis of standardized precipitation index due to the effects of probability distributions and parameter errors[J]. Frontiers in Earth Science, 2020, 8: 76, doi: 10.3389/feart.2020.00076.
[24] Aadhar S, Mishra V. Increased drought risk in South Asia under warming climate: Implications of uncertainty in potential evapotranspiration estimates[J]. Journal of Hydrometeorology, 2020, 21(12): 2979-2996.
Outlines

/