Climatology and Hydrology

Relationships between North Africa subtropical high and summer precipitation over Central Asia

  • Xing LU ,
  • Yong ZHAO
Expand
  • Plateau Atmosphere & Environment Key Laboratory of Sichuan Province, School of Atmospheric Sciences, Chengdu University of Information Technology, Chengdu 610225, Sichuan, China

Received date: 2021-11-01

  Revised date: 2021-11-20

  Online published: 2022-08-11

Abstract

On the basis of the ERA-Interim monthly reanalysis data provided by the European Center for Medium-Range Weather Forecasts from 1979 to 2019 and Climatic Research Unit monthly precipitation data, the relationships between the North Africa subtropical high and the summer precipitation over Central Asia are analyzed. The results show that the variations of the ridge line index and eastern extension ridge index of the North Africa subtropical high are closely related to those of the summer precipitation over Central Asia. The effects of single and concurrent variations of the North Africa subtropical high on summer precipitation and circulations over Central Asia are significantly different. The ridge line of the subtropical high mainly affects the precipitation anomalies in the south and north parts of Central Asia, whereas the eastern extension ridge of the subtropical high plays an important role in modulating summer precipitation in the central and southern regions of Central Asia. Furthermore, we analyze the anomalous distribution of summer precipitation and atmospheric circulations under the concurrent variations of two indices. When the subtropical high shifts southeastward, there is an anomalous cyclone over the Caspian Sea and Aral Sea, corresponding to more summer precipitation over most areas of Kazakhstan. Meanwhile, Xinjiang is controlled by an anomalous anticyclone over the Mongolian Plateau, corresponding to less summer precipitation. When the subtropical high shifts southwestward, Central Asia is mainly controlled by an anomalous anticyclone, but there is an anomalous cyclonic shear in its northeast parts. Thus, more rainfall occurs in the northeast of Central Asia and less precipitation in other regions. When the subtropical high shifts northwestward, Central Asia is controlled by an anomalous anticyclone, corresponding to less summer precipitation. When the subtropical high shifts southeastward, Central Asia is controlled by an anomalous cyclone, and tropical Indian Ocean water vapor can enter Central Asia via two-step transportation, forming favorable dynamic and water vapor conditions; thus, Central Asia receives more summer precipitation.

Cite this article

Xing LU , Yong ZHAO . Relationships between North Africa subtropical high and summer precipitation over Central Asia[J]. Arid Land Geography, 2022 , 45(4) : 1050 -1060 . DOI: 10.12118/j.issn.1000-6060.2021.508

References

[1] 符淙斌, 王金根, 吴达铭. 北半球副高带的长期变化(一)[J]. 气象, 1980(3): 3-5.
[1] [ Fu Congbin, Wang Jingen, Wu Daming. Long term variation of the subtropical high belt in the Northern Hemisphere(1)[J]. Meteorological Monthly, 1980(3): 3-5. ]
[2] 骆美霞, 朱抱真, 沈如金. 大地形对夏季北半球副热带高压形成作用的数值试验[J]. 大气科学, 1986, 10(3): 258-265.
[2] [ Luo Meixia, Zhu Baozhen, Shen Rujin. A numerical experiment of the dynamic effect of large-scale topography on the formation of subtropical high in the northern summer[J]. Chinese Journal of Atmospheric Sciences, 1986, 10(3): 258-265. ]
[3] 吴国雄, 刘屹岷. 空间非均匀加热对副热带高压带形成和变异的影响I: 尺度分析[J]. 气象学报, 1999, 57(3): 257-263.
[3] [ Wu Guoxiong, Liu Yimin. The effect of spatially nonuniform heating on the formation and variation of subtropical high part I: Scale analysis[J]. Acta Meteorologica Sinica, 1999, 57(3): 257-263. ]
[4] 刘屹岷, 刘辉, 刘平, 等. 空间非均匀加热对副热带高压形成和变异的影II: 陆面感热与东太平洋副高[J]. 气象学报, 1999, 57(4): 385-396.
[4] [ Liu Yimin, Liu Hui, Liu Ping, et al. The effect of spatially nonuniform heating on the formation and variation of subtropical high part II: Land surface sensible heating and East Pacific subtropical high[J]. Acta Meteorologica Sinica, 1999, 57(4): 385-396. ]
[5] Yeh T C. Some aspects of the thermal influences of the Qinghai-Tibetan Plateau on the atmospheric circulation[J]. Archives for Meteorology, Geophysics, and Bioclimatology, Series A, 1982, 31(3): 205-220.
[6] 李栋梁, 魏丽, 李维京, 等. 青藏高原地面感热对北半球大气环流和中国气候异常的影响[J]. 气候与环境研究, 2003, 8(1): 60-70.
[6] [ Li Dongliang, Wei Li, Li Weijing, et al. The effect of surface sensible heat flux of the Qinghai-Xizang Plateau on general circulation over the Northern Hemisphere and climatic anomaly of China[J]. Climatic and Environmental Research, 2003, 8(1): 60-70. ]
[7] 周秀骥, 赵平, 陈军明, 等. 青藏高原热力作用对北半球气候影响的研究[J]. 中国科学(D辑: 地球科学), 2009, 39(11): 1473-1486.
[7] [ Zhou Xiuji, Zhao Ping, Chen Junming, et al. Impacts of thermodynamic processes over the Tibetan Plateau on the Northern Hemispheric climate[J]. Science China Earth Sciences, 2009, 39(11): 1473-1486. ]
[8] Zhao Y, Huang A, Zhou Y, et al. The impacts of the summer plateau monsoon over the Tibetan Plateau on the rainfall in the Tarim Basin, China[J]. Theoretical and Applied Climatology, 2016, 126(1): 265-272.
[9] 张家宝, 邓子风, 马建民. 新疆大降水及其预报的研究(二)[J]. 新疆气象, 1986(2): 4-10.
[9] [ Zhang Jiabao, Deng Zifeng, Ma Jianmin. Study on heavy precipitation and its forecast in Xinjiang (2)[J]. Desert and Oasis Meteorology, 1986(2): 4-10. ]
[10] 张庆云, 陶诗言. 夏季西太平洋副热带高压北跳及异常的研究[J]. 气象学报, 1999, 57(5): 539-548.
[10] [ Zhang Qingyun, Tao Shiyan. The study of the sudden northward jump of the subtropical high over the Western Pacific[J]. Acta Meteorologica Sinica, 1999, 57(5): 539-548. ]
[11] 卫捷, 杨辉, 孙淑清. 西太平洋副热带高压东西位置异常与华北夏季酷暑[J]. 气象学报, 2013, 62(2): 308-316.
[11] [ Wei Jie, Yang Hui, Sun Shuqing. Relationship between the anomaly longitudinal position of subtropical high in the Western Pacific and severe hot weather in North China in summer[J]. Acta Meteorologica Sinica, 2013, 62(2): 308-316. ]
[12] 韦道明, 李崇银, 谭言科. 夏季西太平洋副热带高压南北位置变动特征及其影响[J]. 气候与环境研究, 2011, 16(3): 255-272.
[12] [ Wei Daoming, Li Chongyin, Tan Yanke. Variation features and the impact of the latitudinal position of the Western Pacific subtropical high in summer[J]. Climatic and Environmental Research, 2011, 16(3): 255-272. ]
[13] 陶诗言, 徐淑英. 夏季江淮流域持久性旱涝现象的环流特征[J]. 气象学报, 1962, 32(1): 1-18.
[13] [ Tao Shiyan, Xu Shuying. Some aspects of the circulation during the periods of the persistent drought and flood in Yangtze Huaihe River Basin in summer[J]. Acta Meteorologica Sinica, 1962, 32(1): 1-18. ]
[14] 假拉, 周顺武, 丁锋. 北非高压的气候特征及其对中国夏季降水的影响[J]. 南京气象学院学报, 2002, 25(6): 816-822.
[14] [ Jia La, Zhou Shunwu, Ding Feng. The climatic character of North Africa subtropical high and its effect on summer precipitation in China[J]. Journal of Nanjing Institute of Meteorology, 2002, 25(6): 816-822. ]
[15] Chen F, Chen J, Huang W, et al. Westerlies Asia and monsoonal Asia: Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-Science Reviews, 2019, 192: 337-354.
[16] Zhao Y, Yu X, Yao J, et al. Evaluation of the subtropical westerly jet and its effects on the projected summer precipitation over Central Asia using multi-CMIP5 models[J]. International Journal of Climatology, 2018(38): 1176-1189.
[17] 姜逢清, 胡汝骥. 近50年来新疆气候变化与洪、旱灾害扩大化[J]. 中国沙漠, 2004, 24(1): 37-42.
[17] [ Jiang Fengqing, Hu Ruji. Climate change and flood & drought disasters in Xinjiang during recent 50 years[J]. Journal of Desert Research, 2004, 24(1): 37-42. ]
[18] 陈亚宁, 李稚, 方功焕. 中亚天山地区关键水文要素变化与水循环研究进展[J]. 干旱区地理, 2022, 45(1): 1-8.
[18] [ Chen Yaning, Li Zhi, Fang Gonghuan. Changes of key hydrological elements and research progress of water cycle in the Tianshan Mountains, Central Asia[J]. Arid Land Geography, 2022, 45(1): 1-8. ]
[19] 郭玉琳, 赵勇, 周雅蔓, 等. 新疆天山山区夏季降水日变化特征及其与海拔高度关系[J]. 干旱区地理, 2022, 45(1): 57-65.
[19] [ Guo Yulin, Zhao Yong, Zhou Yaman, et al. Diurnal variation of summer precipitation and its relationship with altitude in Tianshan Mountains of Xinjiang[J]. Arid Land Geography, 2022, 45(1): 57-65. ]
[20] 李珍, 姜逢清. 1961-2004年新疆气候突变分析[J]. 冰川冻土, 2007, 29(3): 351-359.
[20] [ Li Zhen, Jiang Fengqing. A study of abrupt climate change in Xinjiang region during 1961-2004[J]. Journal of Glaciology and Geocryology, 2007, 29(3): 351-359. ]
[21] Berrisford P, Dee D, Poli P, et al. The ERA-Interim archive: Version 2.0[J]. Nihon Seirigaku Zasshi Journal of the Physiological Society of Japan, 2011, 31(10): 1-19
[22] Simmons A, Uppala S, Dee D, et al. ERA-Interim: New ECMWF reanalysis products from 1989 onwards[J]. ECMWF Newsletter, 2007, 110: 25-35.
[23] Harris I, Jones P D, Osborn T J, et al. Updated high-resolution grids of monthly climatic observations: The CRU TS3.10 Dataset[J]. International Journal of Climatology, 2014, 34(3): 623-642.
[24] 陈发虎, 黄伟, 靳立亚, 等. 全球变暖背景下中亚干旱区降水变化特征及其空间差异[J]. 中国科学: 地球科学, 2011, 41(11): 1647-1657.
[24] [ Chen Fahu, Huang Wei, Jin Liya, et al. Spatiotemporal precipitation variations in the arid Central Asia in the context of global warming[J]. Science China Earth Sciences, 2011, 41(11): 1647-1657. ]
[25] 黄秋霞, 赵勇, 何清, 等. 基于CRU资料的中亚地区气候特征[J]. 干旱区研究, 2013, 30(3): 396-403.
[25] [ Huang Qiuxia, Zhao Yong, He Qing, et al. Climatic characteristics in Central Asia based on CRU data[J]. Arid Zone Research, 2013, 30(3): 396-403. ]
[26] Hu Z, Zhou Q, Chen X, et al. Evaluation of three global gridded precipitation data sets in Central Asia based on rain gauge observations[J]. International Journal of Climatology, 2018, 38(9): 3475-3493.
[27] 刘芸芸, 李维京, 李清泉. 月尺度西太平洋副热带高压指数的重建与应用[J]. 应用气象学报, 2012, 23(4): 414-423.
[27] [ Liu Yunyun, Li Weijing, Li Qingquan. Reconstruction and application of the monthly Western Pacific subtropical high indices[J]. Journal of Applied Meteorological Science, 2012, 23(4): 414-423. ]
[28] 聂俊, 刘鹏, 赵灿. 西北太平洋副热带高压的不同指数及其与中国东部夏季降水关系的探讨[J]. 大气科学, 2021, 45(4): 833-850.
[28] [ Nie Jun, Liu Peng, Zhao Can. Research on relationship between various indexes of the Western North Pacific substropical high and summer precipitation in east China[J]. Chinese Journal of Atmospheric Sciences, 2021, 45(4): 833-850. ]
[29] Zhu Y, Wang H, Zhou W, et al. Recent changes in the summer precipitation pattern in east China and the background circulation[J]. Climate Dynamics, 2011, 36(7-8): 1463-1473.
[30] Wang B, Xiang B, Lee J Y. Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions[J]. Proceedings of the National Academy of Sciences, 2013, 110(8): 2718-2722.
[31] 王黎娟, 陈璇, 管兆勇, 等. 我国南方洪涝暴雨期西太平洋副高短期位置变异的特点及成因[J]. 大气科学, 2009, 33(5): 1047-1057.
[31] [ Wang Lijuan, Chen Xuan, Guan Zhaoyong, et al. Features of the short-team position variation of the Western Pacific subtropical high during the torrential rain causing severe floods in southern China and its possible cause[J]. Chinese Journal of Atmospheric Sciences, 2009, 33(5): 1047-1057. ]
[32] 姚秀萍, 闫丽朱, 张硕. 大气非绝热加热作用的研究进展与展望[J]. 气象, 2019, 45(1): 1-16.
[32] [ Yao Xiuping, Yan Lizhu, Zhang Shuo. Research progresses and prospects of atmosphere diabatic heating[J]. Meteorological Monthly, 2019, 45(1): 1-16. ]
Outlines

/