Original article

Response of physiological and biochemical metabolism indices of flax to drought stress and its simulation model

  • Jia KANG ,
  • Yue LI ,
  • Lianghe KANG
Expand
  • College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070, Gansu, China

Received date: 2021-09-09

  Revised date: 2021-10-11

  Online published: 2022-05-31

Abstract

Drought has been determined to be a stress factor that affects plant growth and development. In this study, we examined how drought stress has damaged agricultural production in northwestern China. Plants use photosynthesis, osmotic metabolism, and antioxidant metabolism indicators to cope with water deficit. To determine the effect of physiological and biochemical metabolic indices of flax on yield in response to drought stress, the pot-water control experiment was used to simulate the flax drought stress. The physiological and biochemical metabolic indices of flax response to drought stress model were constructed, calibrated, and evaluated according to the measured flax yield in Xigongyi Town, Dingxi City, Gansu Province, China, from 2013 to 2014. The fitting degree of the model was determined using root mean square error (RMSE) and the determination of coefficient (R2). The results showed that (1) the RMSE of the simulated yield was 41.3159-155.6685 kg·hm-2, with the average value being 80.1837 kg·hm-2; R2 ranges from 0.8929 to 0.9894, with an average value of 0.9387. The model has a good fitting degree and strong feasibility. (2) Under severe drought stress, the increase in peroxidase (POD) at the final flowering stage (26.09%-28.00%) was deemed to be the largest, and the catalase (CAT) was noted to decrease among the antioxidant metabolic indices (SOD, POD, and CAT). The content of osmoregulation substances increased, with proline increasing the most, as it reached 236.22%. (3) Proline content was positively correlated with chlorophyll content, malondialdehyde content, and CAT. Soluble protein content was positively correlated with malondialdehyde content and CAT. A positive correlation exists between POD and superoxide dismutase (SOD). The physiological and biochemical indices of flax respond to drought stress, and the degree of stress is related to the yield of flax. This model is a scientific supplement to the physiological and biochemical indices of flax response to drought stress and provides a theoretical basis and support for the efficient production management of flax and in the agricultural production system.

Cite this article

Jia KANG , Yue LI , Lianghe KANG . Response of physiological and biochemical metabolism indices of flax to drought stress and its simulation model[J]. Arid Land Geography, 2022 , 45(3) : 879 -889 . DOI: 10.12118/j.issn.1000-6060.2021.406

References

[1] 郭娜, 李爱荣, 马建富, 等. 施磷水平对胡麻干物质积累与产量的影响[J]. 河北农业科学, 2015, 19(1): 14-17.
[1] [ Guo Na, Li Airong, Ma Jianfu, et al. Effects of different phosphorus application levels on dry matter accumulation and yield of flax[J]. Journal of Hebei Agricultural Sciences, 2015, 19(1): 14-17. ]
[2] 任果香, 文飞, 吕伟, 等. 我国胡麻栽培技术综述[J]. 农业科技通讯, 2015(7): 7-9.
[2] [ Ren Guoxiang, Wen Fei, Lü Wei, et al. A summary of the cultivation techniques of flax in China[J]. Bulletin of Agricultural Science and Technology, 2015(7): 7-9. ]
[3] 赵利, 王斌, 赵玮, 等. 胡麻品种苗期抗旱性综合鉴定与评价[J]. 干旱区资源与环境, 2019, 33(12): 179-185.
[3] [ Zhao Li, Wang Bin, Zhao Wei, et al. Comprehensive evaluation and identification of drought resistance of 16 oil flax cultivars at seedling stage[J]. Journal of Arid Land Resources and Environment, 2019, 33(12): 179-185. ]
[4] Hugh G, Gauch J. A simple protocol for AMMI analysis of yield trials[J]. Crop Science, 2013, 53(5): 1860-1869.
[5] 赵阳, 赵曼利, 焦润安, 等. 陇南油橄榄主栽品种对干旱胁迫的生理响应及抗性综合评价[J]. 热带作物学报, 2017, 38(9): 1620-1627.
[5] [ Zhao Yang, Zhao Manli, Jiao Run’an, et al. The physiological response and comprehensive evaluation of drought hardiness under drought stress of Longnan olive main varieties[J]. Chinese Journal of Tropical Crops, 2017, 38(9): 1620-1627. ]
[6] 张俊, 刘娟, 臧秀旺, 等. 不同生育时期干旱胁迫对花生产量及代谢调节的影响[J]. 核农学报, 2015, 29(6): 1190-1197.
[6] [ Zhang Jun, Liu Juan, Zang Xiuwang, et al. Effects of drought stress on the yield and metabolic regulation at different growth stages in peanut[J]. Journal of Nuclear Agricultural Sciences, 2015, 29(6): 1190-1197. ]
[7] 姚宁, 宋利兵, 刘健, 等. 不同生长阶段水分胁迫对旱区冬小麦生长发育和产量的影响[J]. 中国农业科学, 2015, 48(12): 2379-2389.
[7] [ Yao Ning, Song Libing, Liu Jian, et al. Effects of water stress at different growth stages on the development and yields of winter wheat in arid region[J]. Scientia Agricultura Sinica, 2015, 48(12): 2379-2389. ]
[8] 吴瑞香, 杨建春, 王利琴, 等. 不同抗旱类型胡麻幼苗对干旱胁迫的生理响应[J]. 华北农学报, 2019, 34(2): 145-153.
[8] [ Wu Ruixiang, Yang Jianchun, Wang Liqin, et al. Physiological response of flax seedlings with different drought-resistances to drought stress[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(2): 145-153. ]
[9] 王利琴, 杨建春, 张永福, 等. 干旱胁迫对不同品种胡麻生理特性和种子萌发的影响[J]. 种子, 2021, 40(6): 107-111, 115.
[9] [ Wang Liqin, Yang Jianchun, Zhang Yongfu, et al. Effects of drought stress on physiological characteristics and seed germination of different varieties of Linum usitatissimum[J]. Seed, 2021, 40(6): 107-111, 115. ]
[10] 赵利, 党占海, 牛俊义, 等. 水分胁迫下不同抗旱类型胡麻苗期生理生化指标变化[J]. 干旱地区农业研究, 2015, 33(4): 206-211.
[10] [ Zhao Li, Dang Zhanhai, Niu Junyi, et al. Physiological and biochemical characteristics of drought resistance for oil flax at seedling stage under water stress[J]. Agricultural Research in the Arid Areas, 2015, 33(4): 206-211. ]
[11] 李广, 黄高宝. 基于APSIM模型的降水量分配对旱地小麦和豌豆产量影响的研究[J]. 中国生态农业学报, 2010, 18(2): 342-347.
[11] [ Li Guang, Huang Gaobao. Determination of the effect of precipitation distribution on yield of wheat and pea in dryland using APSIM[J]. Chinese Journal of Eco-Agriculture, 2010, 18(2): 342-347. ]
[12] 李广, 李玥, 黄高宝, 等. 基于APSIM模型旱地春小麦产量对温度和CO2浓度升高的响应[J]. 中国生态农业学报, 2012, 20(8): 1088-1095.
[12] [ Li Guang, Li Yue, Huang Gaobao, et al. Response of dryland spring wheat yield to elevated CO2 concentration and temperature by APSIM model[J]. Chinese Journal of Eco-Agriculture, 2012, 20(8): 1088-1095. ]
[13] 王亚许, 孙洪泉, 吕娟, 等. 基于APSIM模型的春玉米生育期旱灾损失敏感性定量分析[J]. 灾害学, 2021, 36(2): 30-36.
[13] [ Wang Yaxu, Sun Hongquan, Lü Juan, et al. Quantitative analysis of the sensitivity of spring maize to drought in the growth period based on APSIM model[J]. Journal of Catastrophology, 2021, 36(2): 30-36. ]
[14] 沈禹颖. 黄土高原苜蓿-小麦轮作系统土壤与作物的组分动态[D]. 广州: 中山大学, 2004.
[14] [ Shen Yuying. Soil and crop composition dynamics of alfalfa-wheat rotation system on the Loess Plateau[D]. Guangzhou: Sun Yat-sen University, 2004. ]
[15] 古丽娜扎尔·艾力, 陶海宁, 王自奎, 等. 基于APSIM模型的黄土旱塬区苜蓿--小麦轮作系统深层土壤水分及水分利用效率研究[J]. 草业学报, 2021, 30(7): 22-33.
[15] [ Ali Gulnazar, Tao Haining, Wang Zikui, et al. Evaluating the deep-horizon soil water content and water use efficiency in the alfalfa-wheat rotation system on the dryland of Loess Plateau using APSIM[J]. Acta Prataculturae Sinica, 2021, 30(7): 22-33. ]
[16] 徐晨, 张鹏, 徐克章, 等. 干旱胁迫对不同大豆品种叶片光合及生理特性的影响[J]. 中国油料作物学报, 2013, 35(6): 674-679.
[16] [ Xu Chen, Zhang Peng, Xu Kezhang, et al. Effects of drought stress on leaf photosynthesis and some physiological traits in different soybean cultivars[J]. Chinese Journal of Oil Crop Sciences, 2013, 35(6): 674-679. ]
[17] 邹琦. 植物生理学实验指导[M]. 北京: 中国农业出版社, 2000.
[17] [ Zou Qi. Plant physiology experiment guidance[M]. Beijing: China Agriculture Press, 2000. ]
[18] 李合生. 植物生理生化实验原理和技术[M]. 北京: 高等教育出版社, 2000: 134-137.
[18] [ Li Hesheng. Principles and techniques of plant physiology and biochemistry experiments[M]. Beijing: Higher Education Press, 2000: 134-137. ]
[19] 李玥, 牛俊义, 谢亚萍, 等. 基于APSIM的油用亚麻叶面积指数模型构建[J]. 中国油料作物学报, 2015, 37(3): 329-335.
[19] [ Li Yue, Niu Junyi, Xie Yaping, et al. Simulation of oilseed flax leaf area index based on APSIM[J]. Chinese Journal of Oil Crop Sciences, 2015, 37(3): 329-335. ]
[20] 李玥, 牛俊义, 郭丽琢, 等. AquaCrop模型在西北胡麻生物量及产量模拟中的应用和验证[J]. 中国生态农业学报, 2014, 22(1): 93-103.
[20] [ Li Yue, Niu Junyi, Guo Lizhuo, et al. Application and validation of AquaCrop model in simulating biomass and yield of oil flax in northwest China[J]. Chinese Journal of Eco-Agriculture, 2014, 22(1): 93-103. ]
[21] Pachepsky L B, Haskett J D, Acock B. An adequate model of photosynthesis: I Parameterization, validation and comparison of models[J]. Agricultural Systems, 1996, 50(2): 209-225.
[22] Arora V K, Gajri P R. Assessment of a crop growth-water balance model for predicting maize growth and yield in a subtropical environment[J]. Agricultural Water Management, 2000, 46(2): 157-166.
[23] Svirezhev Y M. Simulation of ecophysiological process of growth in several annual crops[J]. Field Crops Research, 1992, 28(3): 268-269.
[24] 薛昌颖, 杨晓光, Bouman B A M, et al. ORYZA2000模型模拟北京地区旱稻的适应性初探[J]. 作物学报, 2005, 31(12): 1567-1571.
[24] [ Xue Changying, Yang Xiaoguang, Bouman B A M, et al. Preliminary approach on adaptability of ORYZA20 model for aerobic rice in Beijing region[J]. Acta Agronomica Sinica, 2005, 31(12): 1567-1571. ]
[25] Boling A A, Bouman B, Tuong T P, et al. Modelling the effect of groundwater depth on yield-increasing interventions in rainfed lowland rice in central Java, Indonesia[J]. Agricultural Systems, 2007, 92(1-3): 115-139.
[26] Carberry P S, Muchow R C, Mccown R L. Testing the CERES-Maize simulation model in a semi-arid tropical environment[J]. Field Crops Research, 1989, 20(4): 297-315.
[27] Ma L, Hoogenboom G, Ahuja L R, et al. Evaluation of the RZWQM-CERES-Maize hybrid model for maize production[J]. Agricultural Systems, 2006, 87(3): 274-295.
[28] Marcelis L, Heuvelink E, Goudriaan J. Modelling biomass production and yield of horticultural crops: A review[J]. Hortic, 1998, 74(1-2): 83-111.
[29] Bttcher U, Weymann W, Pullens J, et al. Development and evaluation of HUME-OSR: A dynamic crop growth model for winter oilseed rape[J]. Field Crops Research, 2020, 246: 107679, doi: 10. 1016/j.fcr.2019.107679.
[30] 汤亮, 朱艳, 鞠昌华, 等. 油菜地上部干物质分配与产量形成模拟模型[J]. 应用生态学报, 2007, 18(3): 526-530.
[30] [ Tang Liang, Zhu Yan, Ju Changhua, et al. Dynamic simulation on shoot dry matter partitioning and yield formation of rapeseed[J]. Chinese Journal of Applied Ecology, 2007, 18(3): 526-530. ]
[31] Habekotte B. A model of the phenological development of winter oilseed rape (Brassica napus L.)[J]. Field Crops Research, 1997, 54(2-3): 127-136.
[32] Habekotte B. Description, parameterization and user guide of LINTUL-BRASNAP 1.1: A crop growth model of winter oilseed rape (Brassica napus L.)[J]. African Journal of Biotechnology, 1997, 4(2): 157-159.
[33] Keating B A, Carberry P S, Hammer G L, et al. An overview of APSIM, a model designed for farming systems simulation[J]. European Journal of Agronomy, 2003, 18(3): 267-288.
[34] Turpin J E, Robertson M J, Haire C, et al. Simulating fababean development, growth, and yield in Australia[J]. Crop and Pasture Science, 2003, 54(1): 39-52.
[35] Anwar M R, Mckenzie B A, Hill G D. Water-use efficiency and the effect of water deficits on crop growth and yield of Kabuli chickpea (Cicer arietinum L.) in a cool-temperate subhumid climate[J]. The Journal of Agricultural Science, 2003, 141(3): doi: 10.1017/S0021859603003630.
[36] 姚宁, 周元刚, 宋利兵, 等. 不同水分胁迫条件下DSSAT-CERES-Wheat模型的调参与验证[J]. 农业工程学报, 2015, 31(12): 138-150.
[36] [ Yao Ning, Zhou Yuangang, Song Libing, et al. Parameter estimation and verification of DSSAT-CERES-Wheat model for simulation of growth and development of winter wheat under water stresses at different growth stages[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(12): 138-150. ]
[37] 陈娇, 谢小玉, 张小短, 等. 甘蓝型油菜苗期抗旱性鉴定及综合抗旱指标筛选[J]. 中国油料作物学报, 2019, 41(5): 713-722.
[37] [ Chen Jiao, Xie Xiaoyu, Zhang Xiaoduan, et al. Seedling drought resistance and parameter screening of rapeseed[J]. Chinese Journal of Oil Crop Sciences, 2019, 41(5): 713-722. ]
[38] Hall L M, Booker H, Siloto R M P, et al. Flax (Linum usitatissimum L.)[M]. Urbana: AOCS Press, 2016: 157-194.
[39] Dillman A C, Brinsmade J C. Effect of spacing on the development of the flax plant1[J]. Agronomy Journal, 1938, 30(4): 267, doi: 10. 2134/agronj1938.00021962003000040001x.
[40] 付强. 数据处理方法及其农业应用[M]. 北京: 科学出版社, 2006.
[40] [ Fu Qiang. Data processing method and its agricultural application[M]. Beijing: Science Press, 2006. ]
[41] Krause G H, Weis E. Chlorophyl fluorescence and photosynthesis: The basics[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1991, 42: 313-349.
[42] 魏磊, 崔世茂. 干旱处理对山杏光合特性的影响[J]. 华北农学报, 2008, 23(5): 194-197.
[42] [ Wei Lei, Cui Shimao. The effect of soil drought stress on photosynthetic character of Prunus armeniaca[J]. Acta Agriculturae Boreali-Sinica, 2008, 23(5): 194-197. ]
[43] 牛小霞, 谢亚萍, 王斌, 等. 磷对胡麻叶和蒴果皮中叶绿素质量分数、籽粒产量和品质的影响[J]. 西北农业学报, 2017, 26(8): 1189-1196.
[43] [ Niu Xiaoxia, Xie Yaping, Wang Bin, et al. Effect of phosphorus on chlorophyll mass fraction in leaves and capsule pericarps, seed yield and quality of oilseed flax[J]. Acta Agriculturae Boreali-occidentalis Sinica, 2017, 26(8): 1189-1196. ]
[44] Asada K. The water-water cycle in chloroplasts: Scavenging of active oxygens and dissipation of excess photons[J]. Annual Review of Plant Biology, 1999, 50: 601-639.
[45] Sminoff N, Cumbes Q J. Hydroxy radical scavenging activity of compatible solutes[J]. Phytochem, 1989, 28(4): 1057-1060.
[46] 李玥, 武凌, 高珍妮, 等. 基于APSIM的胡麻光合生产与干物质积累模拟模型[J]. 草业学报, 2018, 27(3): 57-66.
[46] [ Li Yue, Wu Ling, Gao Zhenni, et al. Simulation model of photosynthesis and dry matter accumulation in oilseed flax based on APSIM[J]. Acta Prataculturae Sinica, 2018, 27(3): 57-66. ]
[47] 王钧, 李广, 聂志刚, 等. 陇中黄土高原区旱地春小麦产量对干旱胁迫响应的模拟研究[J]. 干旱区地理, 2021, 44(2): 494-506.
[47] [ Wang Jun, Li Guang, Nie Zhigang, et al. Simulation study of response of spring wheat yield to drought stress in the Loess Plateau of central Gansu[J]. Arid Land Geography, 2021, 44(2): 494-506. ]
[48] Patel P K, Heman T A. Salicylic acid induced alteration in dry matter patting antioxidant defence system and yield in Chickpea (Cicer arietinum L.) under drought stress[J]. Asian Journal of Crop Science, 2012, 4(3): 386-392.
[49] 李少昆, 肖璐, 黄文华. 不同时期干旱胁迫对棉花生长和产量的影响II棉花生长发育及生理特性的变化[J]. 石河子大学学报(自然科学版), 1999, 3(4): 259-264.
[49] [ Li Shaokun, Xiao Lu, Huang Wenhua. Effect of drought stress on cotton growth and lint yield at different growing stage II: The change of cotton growth and physiological characteristicsto water stress[J]. Journal of Shihezi University (Natural Science Edition), 1999, 3(4): 259-264. ]
[50] 葛体达, 隋方功, 白莉萍, 等. 不同土壤水分对玉米光合特性和产量的影响[J]. 上海交通大学学报(农业科学版), 2005, 23(2): 143-147.
[50] [ Ge Tida, Sui Fanggong, Bai Liping, et al. Effects of different soil water content on the photosynthetic character and pod yields of summer marize[J]. Journal of Shanghai Jiaotong University (Agricultural Science Edition), 2005, 23(2): 143-147. ]
[51] 李芳兰, 包维楷, 吴宁. 白刺花幼苗对不同强度干旱胁迫的形态与生理响应[J]. 生态学报, 2009, 29(10): 5406-5416.
[51] [ Li Fanglan, Bao Weikai, Wu Ning. Morphological and physiological responses of current Sophora davidii seedlings to drought stress[J]. Acta Ecologica Sinica, 2009, 29(10): 5406-5416. ]
[52] Rigoberto R S, Josué K S, Jorge A A G, et al. Biomass distribution, maturity acceleration and yield in drought stressed common bean cultivars[J]. Field Crops Research, 2004, 85(2-3): 203-211.
[53] 刘丽, 欧阳竹, 武兰芳, 等. 阶段性干旱及复水对小麦光合特性和产量的影响[J]. 生态学杂志, 2012, 31(11): 2797-2803.
[53] [ Liu Li, Ouyang Zhu, Wu Lanfang, et al. Effects of phased drought and re-watering on the photosynthetic characteristics and grain yield of winter wheat[J]. Chinese Journal of Ecology, 2012, 31(11): 2797-2803. ]
[54] 王建伟, 周凌云. 土壤水分变化对金银花叶片生理生态特征的影响[J]. 土壤, 2007, 39(3): 479-482.
[54] [ Wang Jianwei, Zhou Lingyun. Effects of soil moisture content on physio-ecological characteristics of Lonicera japonica thunb leaves[J]. Soils, 2007, 39(3): 479-482. ]
Outlines

/