Influence analysis of geographic parameters on lightning in plateau
Received date: 2021-06-22
Revised date: 2021-08-17
Online published: 2022-05-31
The influence of terrain on lightning current parameters cannot be ignored as a basis for lightning theory study and engineering protection application. Thus, in this study, the impacts of altitude, slope, aspect, and soil conductivity on the characteristics of cloud-to-ground lightning distribution in Qinghai Province, China, were quantitatively analyzed using cloud-to-ground lightning data from 2014 to 2018, digital terrain altitude data, and the HWSD data set. As per the data, it was determined that (1) cloud-to-ground lightning mostly concentrated at the altitude of 3150-4850 m and a slope of 0-35°. The number of slope to the northeast had the greatest cloud-to-ground lightning, whereas the one to the southeast had the least. The electrical conductivity corresponding to cloud-to-ground lightning is primarily concentrated at a distance of 100 Ω·m. (2) For a given unit area, the cloud-to-ground lightning frequency increased first and then decreased with altitude. The number of cloud-to-ground lightning strikes increases slowly as the slope increases. In addition, the average cloud-to-ground lightning intensity decreases first and then increases as altitude increases. It showed a trend of gradual increase as the slope increased and an increasing trend as the conductivity increased. (3) A correlation analysis was performed between the cloud-to-ground lightning data and the mean value of the geographical parameters in a 1 km×1 km grid covering the active areas of 92°27′00′′-97°44′24′′E and 31°40′48′′-34°16′48′′N. The cloud-to-ground lightning density in the selected areas was positively correlated with altitude and negatively correlated with the slope. A negative correlation was noted between cloud-to-ground lightning intensity and mean altitude, but a positive correlation with slope.
Key words: lightning activity; altitude; slope; slope direction; soil conductivity; Qinghai Plateau
Yanan HU , Shiyin TAO , Meizhu GONG , Hailing MA . Influence analysis of geographic parameters on lightning in plateau[J]. Arid Land Geography, 2022 , 45(3) : 746 -753 . DOI: 10.12118/j.issn.1000-6060.2021.284
[1] | 郄秀书, 周筠珺, 袁铁. 卫星观测到的全球闪电活动及其地域差异[J]. 地球物理学报, 2003, 46(3): 743-750. |
[1] | [ Qie Xiushu, Zhou Yunjun, Yuan Tie. Global lighting activities and their regional differences observed from the satellite[J]. Chinese Journal of Geophysics, 2003, 46(3): 743-750. ] |
[2] | 刘兆旭, 刘晶, 范子昂. 2005-2020年新疆雷电灾害特征分析[J/OL]. 干旱区地理. [2021-06-22]. https://kns.cnki.net/kcms/detail/65.1103.X.20220124.2009.007.html. |
[2] | [ Liu Zhaoxu, Liu Jing, Fan Zi’ang. Characteristics of lightning disaster in Xinjiang from 2005 to 2020[J/OL]. Arid Land Geography. [2021-06-22]. https://kns.cnki.net/kcms/detail/65.1103.X.20220124.2009.007.html . ] |
[3] | William E R. Lightning and climate: A review[J]. Atmospheric Research, 2005, 76(1-4): 272-287. |
[4] | Smith R B. The influence of mountains on the atmosphere[C]// Saltzman B. Advances in Geophysics. New York: Academic Press Inc., 1970: 87-230. |
[5] | 申元, 王磊, 马御棠, 等. 海拔高度对云南某地雷电参数的影响[J]. 电力建设, 2012, 33(4): 35-37. |
[5] | [ Shen Yuan, Wang Lei, Ma Yutang, et al. Effect of elevation on lighting parameters in Yunan Province[J]. Electric Power Construction, 2012, 33(4): 35-37. ] |
[6] | 李家启. 基于LLS的重庆地区雷电活动规律及其风险评估研究[D]. 南京: 南京信息工程大学, 2012. |
[6] | [ Li Jiaqi. Study on lighting activity regularity and risk assessment based on LLS in Chongqing[D]. Nanjing: Nanjing University of Information Science and Technology, 2012. ] |
[7] | 范仲之, 付雅婷. 山西省闪电活动时空特征及其与地形的相关性分析[J]. 广东气象, 2017, 39(4): 69-72. |
[7] | [ Fan Zhongzhi, Fu Yating. Temporal and spatial characteristics of lightning activity and its relation to topography in Shanxi Province correlation analysis[J]. Guangdong Meteorology, 2017, 39(4): 69-72. ] |
[8] | Bourscheidt V, Pinto Junior O, Naccarato K P, et al. The influence of topography on the cloud-to-ground lightning density in south Brazil[J]. Atmospheric Research, 2009, 91(2): 508-513. |
[9] | Wagner G, Fuelberg H E, Kann D, et al. A GIS-based approach to lightning studies for West Texas and New Mexico[EB/OL]. [2007-9-26]. http://library.cma.gov.cn:8080/ams_data/AMS2006_/103103. pdf . ] |
[10] | 黄鑫, 刘建红, 申克建, 等. 基于MODIS的青海草地产草量变化遥感分析[J]. 干旱区地理, 2020, 43(3): 715-725. |
[10] | [ Huang Xin, Liu Jianhong, Shen Kejian, et al. Grassland yield change in Qinghai Province based on MODIS data[J]. Arid Land Geography, 2020, 43(3): 715-725. ] |
[11] | 胡玲, 郭卫东, 王振宇, 等. 青海高原雷暴气候特征及其变化分析[J]. 气象, 2009, 35(11): 64-70. |
[11] | [ Hu Ling, Guo Weidong, Wang Zhenyu, et al. Climate characteristics of thunderstorm and its change in Qinghai Plateau[J]. Meteorological Monthly, 2009, 35(11): 64-70. ] |
[12] | 朱平, 俞小鼎, 王振会, 等. 青海高原致灾性对流天气时空分布特征[J]. 干旱气象, 2019, 37(3): 377-383. |
[12] | [ Zhu Ping, Yu Xiaoding, Wang Zhenhui, et al. Temporal and spatial distribution characteristics of disastrous convective weather over the Qinghai Plateau[J]. Journal of Arid Meteorology, 2019, 37(3): 377-383. ] |
[13] | 刘晓燕, 王玉娟, 王军, 等. 青海东部雷电活动环境特征及其预报[J]. 干旱气象, 2018, 36(4): 676-683. |
[13] | [ Liu Xiaoyan, Wang Yujuan, Wang Jun, et al. Environment characteristics of lightning activity and its forecast in the eastern Qinghai[J]. Journal of Arid Meteorology, 2018, 36(4): 676-683. ] |
[14] | Carey L D, Rutledge S A, Petersen W A. The relationship between severe storm reports and cloud-to-ground lightning polarity in the contiguous United States from 1989 to 1998[J]. Monthly Weather Review, 2003, 131(7): 1211-1228. |
[15] | 王志超, 庞文静, 梁丽, 等. ADTD闪电定位网在北京地区定位效率的自评估[J]. 气象科技, 2018, 46(4): 638-643. |
[15] | [ Wang Zhichao, Pang Wenjing, Liang Li, et al. Self-evaluation on detection efficiency of ADTD lighting location network in Beijing[J]. Meteorological Science and Technology, 2018, 46(4): 638-643. ] |
[16] | Li W S, Xu S H, Zheng J M, et al. Target curvature driven fairing algorithm for planner cubic B-spline curves[J]. Computer Aided Geometric Design, 2004, 21(5): 499-513. |
[17] | 徐祥德, 卞林根, 张光智, 等. 青藏高原地-气过程动力、热力结构综合物理图像[J]. 中国科学: 地球科学, 2001(5): 428-440. |
[17] | [ Xu Xiangde, Bian Lingen, Zhang Guangzhi, et al. Integrated physical images of the dynamic and thermal structures of the earth-atmosphere processes in the Tibetan Plateau[J]. Scientia Sinica (Terrae), 2001(5): 428-440. ] |
[18] | 潘多, 侯正俊, 靳世强, 等. 青藏高原东北部强冰雹天气特征分析[J]. 西藏科技, 2016(12): 67-70. |
[18] | [ Pan Duo, Hou Zhengjun, Jin Shiqiang, et al. Analysis of weather characteristics of severe hail in northeastern Tibetan Plateau[J]. Xizang Science and Technology, 2016(12): 67-70. ] |
[19] | 苏永玲, 马秀梅, 马元仓, 等. 高空冷涡和副高背景下青海冰雹特征对比分析[J]. 沙漠与绿洲气象, 2018, 12(4): 22-29. |
[19] | [ Su Yongling, Ma Xiumei, Ma Yuancang, et al. Comparative analysis on hail characteristics under cold vortex and subtropical high background in Qinghai[J]. Desert and Oasis Meteorology, 2018, 12(4): 22-29. ] |
[20] | 刘平英, 周清倩, 胡颖, 等. 近12年云南省云地闪活动变化及雷电灾害时空分布特征[J]. 气象研究与应用, 2018, 39(3): 86-91. |
[20] | [ Liu Pingying, Zhou Qingqian, Hu Ying, et al. Changes in cloud-to-ground flashes and spatial and temporal distribution characteristics of lightning disaster in Yunnan in recent 12 years[J]. Journal of Meteorological Research and Application, 2018, 39(3): 86-91. ] |
[21] | 张廷龙, 郄秀书, 言穆弘. 中国内陆高原不同海拔地区雷暴电学特征成因的初步分析[J]. 高原气象, 2009, 28(5): 1006-1016. |
[21] | [ Zhang Yanlong, Qie Xiushu, Yan Muhong. Preliminary analysis on formation of electrical characteristics of thunderstorm in different altitude regions in Chinese inland plateau[J]. Plateau Meteorology, 2009, 28(5): 1006-1016. ] |
[22] | 李政. 重庆地区雷电活动规律及下垫面状况分析[D]. 南京: 南京信息工程大学, 2011. |
[22] | [ Li Zheng. Characteristics of lighting activity in Chongqing affected by the analysis of underlying surface[D]. Nanjing: Nanjing University of Information Science and Technology, 2011. ] |
[23] | 尹丽云, 王灏樾, 金文杰, 等. 低纬高原复杂地形对闪电的影响分析[C]// 第35届中国气象学会年会S19雷电物理和防雷新技术--第十六届防雷减灾论坛. 安徽: 中国气象学会, 2018. |
[23] | Yin Liyun, Wang Haoyue, Jin Wenjie, et al. Analysis of the impact of complex terrain on lightning in low latitude plateau[C]// The 35th Annual Meeting of The Chinese Meteorological Society S19 Lightning Physics and New Lightning Protection Technology : The 16th Forum on Lightning Protection and Disaster Reduction Anhui: Chinese Meteorological Society, 2018. ] |
[24] | Jayaratne E R, Kuleshov Y. Geographical and seasonal characteristics of the relationship between lightning ground flash density and rainfall within the continent of Australia[J]. Atmospheric Research, 2006, 79(4): 1-14. |
[25] | Xie Y R, Xu K, Zhang T F. Five-year study of cloud-to-ground lightning activity in Yunnan Province, China[J]. Atmospheric Research, 2013, 129-130: 49-57. |
[26] | 韩贵锋, 叶林, 孙忠伟. 山地城市坡向对地表温度的影响--以重庆市主城区为例[J]. 生态学报, 2014, 34(14): 4017-4024. |
[26] | [ Han Guifeng, Ye Lin, Sun Zhongwei. Influence of aspect on land surface temperature in mountainous city: A case study in central area of Chongqing City[J]. Acta Ecologica Sinica, 2014, 34(14): 4017-4024. ] |
[27] | 李进梁. 亚洲季风区雷暴和闪电活动特征研究[D]. 兰州: 兰州大学, 2020. |
[27] | [ Li Jinliang. Studies on characteristics of thunderstorm and lightning activity over the Asian monsoon region[D]. Lanzhou: Lanzhou Univercity, 2020. ] |
[28] | 宋晓爽, 郑栋, 张义军, 等. 上海及周边地区地闪活动特征及海陆差异[J]. 气象科技, 2014, 42(1): 164-172. |
[28] | [ Song Xiaoshuang, Zheng Dong, Zhang Yijun, et al. Characteristics of cloud-to-gound lightning in Shanghai and circumjacent regions and land-sea difference[J]. Meteorological Science and Technology, 2014, 42(1): 164-172. ] |
[29] | 宫翠凤, 姜中民, 周丹, 等. 威海市雷暴特征分析[J]. 气象与环境科学, 2010, 33(3): 48-51. |
[29] | [ Gong Cuifeng, Jiang Zhongmin, Zhou Dan, et al. Analysis of thunderstorm characteristic in Weihai[J]. Meteorological and Environmental Sciences, 2010, 33(3): 48-51. ] |
[30] | 刘磊. 土壤电阻率估算及影响因素研究[D]. 南京: 南京信息工程大学, 2011. |
[30] | Liu Lei. Studies on the estimation and the influencing factors of soil resistivity[D]. Nanjing: Nanjing University of Information Science and Technology, 2011. ] |
[31] | 徐霞, 刘熙, 刘刚, 等. 典型地区土壤电阻率的时空特性研究[J]. 水电能源研究, 2017, 35(2): 204-207. |
[31] | [ Xu Xia, Liu Xi, Liu Gang, et al. Study on spatiotemporal property of soil resistivity in typical regions[J]. Water Resources and Power, 2017, 35(2): 204-207. ] |
[32] | 刘刚, 唐军, 孙雷雷, 等. 不同地形地貌的雷电流幅值概率分布对输电线雷击跳闸的影响[J]. 高电压技术, 2013, 39(1): 17-23. |
[32] | [ Liu Gang, Tang Jun, Sun Leilei, et al. Influence of the distribution of lightning current amplitude in different landforms on the transmission-line’s tripping operation[J]. High Voltage Engineering, 2013, 39(1): 17-23. ] |
[33] | 李锐. 土壤电阻率与云地闪之间的关系研究[D]. 大连: 大连理工大学, 2012. |
[33] | [ Li Rui. The study on the relationship between soil resistivity and lightning flash to earth[D]. Dalian: Dalian University of Technology, 2012. ] |
[34] | 王学良, 张科杰, 余田野, 等. 湖北省山区与平原雷电分布及其参数特征[J]. 气象科技, 2019, 47(2): 337-347. |
[34] | [ Wang Xueliang, Zhang Kejie, Yu Tianye, et al. Distribution of lightning and parameter characteristics for mountain and plain areas of Hubei Province[J]. Meteorological Science and Technology, 2019, 47(2): 337-347. ] |
[35] | 李瑞芳, 曹晓斌, 陈奎, 等. 地域及气候对雷电参数的影响分析[J]. 高压电器, 2016, 52(3): 63-68. |
[35] | [ Li Ruifang, Cao Xiaobin, Chen Kui, et al. Effects of geographical and climatic conditions on lightning parameters[J]. High Voltage Apparatus, 2016, 52(3): 63-68. ] |
[36] | 李永福, 司马文霞, 陈林, 等. 基于雷电定位数据的雷电流参数随海拔变化规律[J]. 高电压技术, 2011, 37(7): 1634-1641. |
[36] | [ Li Yongfu, Sima Wenxia, Chen Lin, et al. Law between parameters of lightning current and elevation based on lightning detection data[J]. High Voltage Engineering, 2011, 37(7): 1634-1641. ] |
/
〈 |
|
〉 |