Climatology and Hydrology

Spatiotemporal variation characteristics of aerosol optical depth in Xinjiang from 2003 to 2019

  • Zhixiang YU ,
  • Xia LI ,
  • Xiaojing YU ,
  • Yu ZHENG ,
  • AYITKEN Manlen ,
  • Shuting LI ,
  • Nan WANG
Expand
  • 1. Institute of Desert Meteorology, Chinese Meteorological Administration, Urumqi 830002, Xinjiang, China
    2. Urumqi Meteorological Satellite Ground Station, Urumqi 830011, Xinjiang, China
    3. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
    4. University of the Chinese Academy of Sciences, Beijing 100049, China
    5. Institute of Atmospheric Composition and Environmental Meteorology, Chinese Academy of Meteorological Sciences, Beijing 100081, China

Received date: 2021-05-11

  Revised date: 2021-08-07

  Online published: 2022-04-02

Abstract

Aerosol optical depth (AOD) is the integration of the aerosol extinction coefficient in the vertical direction, which is an important indicator of air pollution. Based on the MODIS Aqua Aerosol L2 products, the temporal and spatial variation characteristics of AOD in Xinjiang, China from 2003 to 2019 were analyzed. First, the MODIS AOD was verified based on the Chinese Aerosol Optical Property Network AOD data, with a correlation coefficient of 0.6381 and an expected error of 65%. Then, the Spearman rank correlation test was used to analyze the annual mean variation of AOD, and 14 main AOD regions were extracted to analyze the annual linear trend. The results show that the climatology of AOD presents obvious regional characteristics in Xinjiang, with higher values over southern Xinjiang than northern Xinjiang. The AOD center located over the Tarim Basin, with mean values exceeding 0.6, is highly related to dust weather. The AOD center located along the economic belt of the north slope of the Tianshan Mountains, with an average value of about 0.3, is mainly affected by human economic activities. Therefore, natural and anthropogenic aerosols are responsible for the air pollution in Xinjiang. In terms of seasonal change, AOD is the most in spring (0.45); however, it is the least in autumn (0.15). Furthermore, the seasonal change in AOD in southern Xinjiang is more significant than in northern Xinjiang for the dust weather. The monthly mean AOD increases from January to April and decreases from May to December, with a range of 0.11-0.51. For the long-term trend, the AOD shows an increasing tendency in the economic belt of the north slope of the Tianshan Mountains and decreasing tendency in desert regions.

Cite this article

Zhixiang YU , Xia LI , Xiaojing YU , Yu ZHENG , AYITKEN Manlen , Shuting LI , Nan WANG . Spatiotemporal variation characteristics of aerosol optical depth in Xinjiang from 2003 to 2019[J]. Arid Land Geography, 2022 , 45(2) : 346 -358 . DOI: 10.12118/j.issn.1000–6060.2021.221

References

[1] 李成才, 毛节泰, 刘启汉, 等. MODIS卫星遥感气溶胶产品在北京市大气污染研究中的应用[J]. 中国科学D辑, 2005, 35(增刊1):177-186.
[1] [ Li Chengcai, Mao Jietai, Liu Qihan, et al. Application of MODIS AOD products in the study of air pollution in Beijing[J]. Science in China (Series D), 2005, 35(Suppl. 1):177-186. ]
[2] 吴邦灿, 费龙. 现代环境监测技术[M]. 北京: 中国环境科学出版社, 2014.
[2] [ Wu Bangcan, Fei Long. Modern environmental monitoring technology[M]. Beijing: China Environmental Science Press, 2014. ]
[3] Kaiser D P, Qian Y. Decreasing trends in sunshine duration over China for 1954—1998: Indication of increased haze pollution?[J]. Geophysical Research Letters, 2002, 29(21):381-384.
[4] Rosenfeld D, Dai J, Yu X, et al. Inverse relations between amounts of air pollution and orographic precipitation[J]. Science, 2007, 315(5817):1396-1398.
[5] Cao J J, Chow J C. Recent advances for aerosol and environment study in Asia[J]. Particuology, 2013, 11(1):3-4.
[6] 张华, 黄建平. 对IPCC第五次评估报告关于人为和自然辐射强迫的解读[J]. 气候变化研究进展, 2014, 10(1):40-44.
[6] [ Zhang Hua, Huang Jianping. An interpretation of man-made and natural radiative forcing in IPCC Fifth Assessment Report[J]. Climate Change Research, 2014, 10(1):40-44. ]
[7] Van Zelm R V, Huijbregts M A J, Hollander H A Den, et al. European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment[J]. Atmospheric Environment, 2008, 42:441-453.
[8] He Q, Huang B. Satellite-based mapping of daily high-resolution ground PM2.5 in China via space-time regression modeling[J]. Remote Sensing of Environment, 2018, 206:72-83.
[9] 黄观, 刘志红, 刘伟, 等. 北疆地区气溶胶光学厚度的时空特征[J]. 生态与农村环境学报, 2015, 31(3):286-292.
[9] [ Huang Guan, Liu Zhihong, Liu Wei, et al. Spatio-temporal characteristics of aerosol optical depth in north Xinjiang[J]. Journal of Ecology and Rural Environment, 2015, 31(3):286-292. ]
[10] Xia X, Chen H, Li Z, et al. Significant reduction of surface solar irradiance induced by aerosol in a suburban region in northeastern China[J]. Journal of Geophysical Research, 2007, 112(D22):928-935.
[11] Li S, Chen L, Xiong X, et al. Retrieval of the haze optical thickness in North China Plain using MODIS data[J]. IEEE Transactions on Geoscience & Remote Sensing, 2013, 51(5):2528-2540.
[12] 罗云峰, 李维亮, 周秀骥. 20世纪80年代中国地区大气气溶胶光学厚度的平均状况分析[J]. 气象学报, 2001, 59(1):77-87.
[12] [ Luo Yunfeng, Li Weiliang, Zhou Xiuji. Analysis of the 1980’s atmospheric aerosol optical depth over China[J]. Acta Meteorologica Sinica, 2001, 59(1):77-87. ]
[13] 罗云峰, 吕达仁, 周秀骥, 等. 30年来我国大气气溶胶光学厚度平均分布特征分析[J]. 大气科学, 2002, 26(6):721-730.
[13] [ Luo Yunfeng, Lü Daren, Zhou Xiuji, et al. Analyses on the spatial distribution of aerosol optical depth over China in recent 30 years[J]. Chinese Journal of Atmospheric Sciences, 2002, 26(6):721-730. ]
[14] 王银牌, 喻鑫, 谢广奇. 中国近15年气溶胶光学厚度时空分布特征[J]. 中国环境科学, 2018, 38(2):426-434.
[14] [ Wang Yinpai, Yu Xin, Xie Guangqi. Spatial distribution and temporal variation of aerosol optical depth over China in the past 15 years[J]. China Environmental Science, 2018, 38(2):426-434. ]
[15] 张亮林, 潘竟虎, 张大弘. 基于MODIS数据的中国气溶胶光学厚度时空分布特征[J]. 环境科学学报, 2018, 38(11):4431-4439.
[15] [ Zhang Lianglin, Pan Jinghu, Zhang Dahong. Spatio-temporal distribution characteristics of aerosol optical depths in China based on MODIS data[J]. Acta Scientiae Circumstantiae, 2018, 38(11):4431-4439. ]
[16] 李成才, 毛节泰, 刘启汉, 等. 利用MODIS研究中国东部地区气溶胶光学厚度的分布和季节变化特征[J]. 科学通报, 2003, 48(19):2094-2100.
[16] [ Li Chengcai, Mao Jietai, Liu Qihan, et al. Analysis of distribution and seasonal variation characteristics of aerosol optical depth over the east of China by MODIS[J]. Chinese Science Bulletin, 2003, 48(19):2094-2100. ]
[17] 郑小波, 周成霞, 罗宇翔, 等. 中国各省区近10年遥感气溶胶光学厚度和变化[J]. 生态环境学报, 2011, 20(4):595-599.
[17] [ Zheng Xiaobo, Zhou Chengxia, Luo Yuxiang, et al. Chinese province-level variations and trends in aerosol optical depth from recent 10 years of remote sensing data[J]. Ecology and Environmental Sciences, 2011, 20(4):595-599. ]
[18] 张西雅, 扈海波. 京津冀地区气溶胶时空分布及与城市化关系的研究[J]. 大气科学, 2017, 41(4):797-810.
[18] [ Zhang Xiya, Hu Haibo. Spatio-temporal characteristics of aerosol optical depth and their relationship with urbanization over Beijing-Tianjin-Hebei region[J]. Chinese Journal of Atmospheric Sciences, 2017, 41(4):797-810. ]
[19] 王晨莹, 何沐全, 陈军辉, 等. 2006—2017年四川盆地MODIS气溶胶光学厚度时空变化特征环[J]. 环境科学研究, 2020, 33(1):54-62.
[19] [ Wang Chenying, He Muquan, Chen Junhui, et al. Temporal and spatial variation characteristics of MODIS aerosol optical depth in Sichuan Basin from 2006 to 2017[J]. Research of Environmental Sciences, 2020, 33(1):54-62. ]
[20] 王捷纯, 邓玉娇. 利用MODIS C6产品分析广东省气溶胶光学厚度时空特征[J]. 气象科技, 2018, 46(4):809-813.
[20] [ Wang Jiechun, Deng Yujiao. Spatial-temporal characteristics of aerosol optical depth in Guangdong based on MODIS C6 data[J]. Meteorological Science and Technology, 2018, 46(4):809-813. ]
[21] 赵辉, 郑有飞, 徐静馨, 等. 乌鲁木齐市大气污染物浓度的变化特征[J]. 环境化学, 2016, 34(11):2118-2126.
[21] [ Zhao Hui, Zheng Youfei, Xu Jingxin, et al. Variation characteristics of air pollutant concentrations in Urumqi[J]. Environmental Chemistry, 2016, 34(11):2118-2126. ]
[22] 谢运兴, 唐晓, 郭宇宏, 等. 新疆大气颗粒物的时空分布特征[J]. 中国环境监测, 2019, 35(1):26-36.
[22] [ Xie Yunxing, Tang Xiao, Guo Yuhong, et al. Spatial and temporal distribution of atmospheric particulate matter in Xinjiang[J]. Environmental Monitoring in China, 2019, 35(1):26-36. ]
[23] 赵克明, 李娜, 李霞, 等. 乌鲁木齐冬季焚风天气过程大气扩散条件特征分析[J]. 干旱区地理, 2021, 44(6):1534-1544.
[23] [ Zhao Keming, Li Na, Li Xia, et al. Characteristic analysis of atmospheric diffusion conditions of winter foehn weather process in Urumqi City[J]. Arid Land Geography, 2021, 44(6):1534-1544. ]
[24] Li X, Xia X, Wang L, et al. The role of foehn in the formation of heavy air pollution events in Urumqi, China[J]. Journal of Geophysical Research, 2015, 120:5371-5384.
[25] Li X, Xia X, Zhong S, et al. Shallow foehn on the northern leeside of Tianshan Mountains and its influence on atmospheric boundary layer over Urumqi, China: A climatological study[J]. Atmospheric Research, 2020, 240:104940, doi: 10.1016/j.atmosres.2020.104940.
[26] 中华人民共和国生态环境部. 2018中国生态环境状况公报[EB/OL]. [2019-05-29]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk15/201912/t20191231_754139.html.
[26] [Ministry of Ecology and Environment of the People’s Republic of China. China eco-environmental quality report 2018[EB/OL]. [2019-05-29]. http://www.mee.gov.cn/xxgk2018/xxgk/xxgk15/201912/t20191231_754139.html. ]
[27] 新疆维吾尔自治区生态环境厅. 新疆维吾尔自治区2018年环境状况公报[EB/OL]. [2019-06-11]. http://sthjt.xinjiang.gov.cn/xjepd/hjzkgb/202001/ad13302dfddb40f4946db95c83fd08e2/files/44f1bd47a80140fcb99a859cd045166e.pdf.
[27] [Department of Ecological Environment of Xinjiang. Xinjiang environmental quality report 2018[EB/OL]. [2019-06-11]. http://sthjt.xinjiang.gov.cn/xjepd/hjzkgb/202001/ad13302dfddb40f4946db95c83fd08e2/files/44f1bd47a80140fcb99a859cd045166e.pdf. ]
[28] 赵仕伟, 高晓清. 利用MODIS C6数据分析中国西北地区气溶胶光学厚度时空变化特征[J]. 环境科学, 2017, 38(7):2637-2646.
[28] [ Zhao Shiwei, Gao Xiaoqing. Analysis of spatio-temporal distribution and variation characteristics of aerosol optical depth over the northwest of China by MODIS C6 product[J]. Environmental Science, 2017, 38(7):2637-2646. ]
[29] 孙晓雷, 甘伟, 林燕, 等. MODIS 3 km气溶胶光学厚度产品检验及其环境空气质量指示[J]. 环境科学学报, 2015, 35(6):1657-1666.
[29] [ Sun Xiaolei, Gan Wei, Lin Yan, et al. Validation of MODIS 3 km aerosol optical depth product and its air quality indication[J]. Acta Scientiae Circumstantiae, 2015, 35(6):1657-1666. ]
[30] Wei J, Li Z, Peng Y, et al. MODIS Collection 6.1 aerosol optical depth products over land and ocean: Validation and comparison[J]. Atmospheric Environment, 2018, 201:428-440.
[31] Wang Y, Yuan Q, Li T, et al. Evaluation and comparison of MODIS Collection 6.1 aerosol optical depth against AERONET over regions in China with multifarious underlying surfaces[J]. Atmospheric Environment, 2019, 200:280-301.
[32] Imani Maryam. Particulate matter (PM2.5 and PM10) generation map using MODIS Level-1 satellite images and deep neural network[J]. Journal of Environmental Management, 2021, 281:111888, doi: 10.1016/j.jenvman.2020.111888.
[33] 陈鹏, 张青, 李悦. 乌鲁木齐市MODIS气溶胶光学厚度与空气质量指数相关性分析[J]. 沙漠与绿洲气象, 2018, 12(2):71-77.
[33] [ Chen Peng, Zhang Qing, Li Yue. Analysis on correlation between MODIS aerosol optical depth values and air quality indices in Urumqi[J]. Desert and Oasis Meteorology, 2018, 12(2):71-77. ]
[34] 黄观, 刘伟, 刘志红, 等. 乌鲁木齐市MODIS气溶胶光学厚度与PM10浓度关系模型研究[J]. 环境科学学报, 2016, 36(2):649-657.
[34] [ Huang Guan, Liu Wei, Liu Zhihong, et al. Relationship between MODIS aerosol optical depth and PM10 ground concentration in Urumqi[J]. Acta Scientiae Circumstantiae, 2016, 36(2):649-657. ]
[35] 孙小雲, 房彦杰, 赵景峰, 等. 塔克拉玛干沙漠输沙势时空分布特征[J]. 干旱区地理, 2020, 43(1):38-47.
[35] [ Sun Xiaoyun, Fang Yanjie, Zhao Jingfeng, et al. Spatial and temporal distribution characteristics of sand drift potential in Taklimakan Desert[J]. Arid Land Geography, 2020, 43(1):38-47. ]
[36] 刘新春, 陈红娜, 赵克蕾, 等. 乌鲁木齐大气细颗粒物PM2.5水溶性离子浓度特征及其来源分析[J]. 生态环境学报, 2015, 24(12):2002-2008.
[36] [ Liu Xinchun, Chen Hongna, Zhao Kelei, et al. Analysis the effect and source on water-soluble ions of fine particulate matter (PM2.5) in Urumqi[J]. Ecology and Environmental Sciences, 2015, 24(12):2002-2008. ]
[37] 吴序鹏, 杨军, 车慧正, 等. 塔克拉玛干沙漠地区气溶胶光学厚度卫星遥感产品验证[J]. 气候与环境研究, 2012, 17(2):149-159.
[37] [ Wu Xupeng, Yang Jun, Che Huizheng, et al. Verification for the satellite remote sensing products of aerosol optical depth in Taklimakan Desert area[J]. Climatic and Environmental Research, 2012, 17(2):149-159. ]
[38] Kaufman Y J, Wald A E, Remer L A, et al. The MODIS 2.1-μm channel-correlation with visible reflectance for use in remote sensing of aerosol[J]. IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(5):1286-1298.
[39] 李忠宾, 王楠, 张自力, 等. 中国地区MODIS气溶胶光学厚度产品综合验证及分析[J]. 中国环境科学, 2020, 40(10):4190-4204.
[39] [ Li Zhongbin, Wang Nan, Zhang Zili, et al. Validation and analyzation of MODIS aerosol optical depth product over China[J]. China Environmental Science, 2020, 40(10):4190-4204. ]
[40] Wei J, Li Z Q, Sun L, et al. An improved merge schemes for MODIS Collection 6.1 Dark Target and Deep Blue combined aerosol products[J]. Atmospheric Environment, 2019, 202:315-327.
[41] Levy R, Mattoo S, Munchak L, et al. The Collection 6 MODIS aerosol products over land and ocean[J]. Atmospheric Measurement Techniques, 2013, 6(11):159-259.
[42] 胡俊, 钟珂, 亢燕铭, 等. 新疆典型城市气溶胶光学厚度变化特征[J]. 中国环境科学, 2019, 39(10):4074-4081.
[42] [ Hu Jun, Zhong Ke, Kang Yanming, et al. Variation in aerosol optical depth over the typical cities in the Xinjiang region[J]. China Environmental Science, 2019, 39(10):4074-4081. ]
[43] 付宏臣, 孙艳玲, 陈莉, 等. 基于AOD数据与GWR模型的2016年新疆地区PM2.5和PM10时空分布特征[J]. 环境科学学报, 2020, 40(1):27-35.
[43] [ Fu Hongchen, Sun Yanling, Chen Li, et al. Temporal and spatial distribution characteristics of PM2.5 and PM10 in Xinjiang region in 2016 based on AOD data and GWR model[J]. Acta Scientiae Circumstantiae, 2020, 40(1):27-35. ]
[44] 岳辉, 刘英, 张元敏. 基于MODIS数据的中国地区气溶胶光学厚度时空变化特征[J]. 环境污染与防治, 2020, 42(1):89-93.
[44] [ Yue Hui, Liu Ying, Zhang Yuanmin. Study on temporal and spatial variability of aerosol optical depth in China region based on MODIS data[J]. Environmental Pollution & Control, 2020, 42(1):89-93. ]
[45] 刘尊驰. 南疆典型沙区沙尘天气发生发展规律研究[D]. 石河子: 石河子大学, 2016.
[45] [ Liu Zunchi. The occurrence and development of sand dust weather in the typical area of southern Xinjiang, China[D]. Shihezi: Shihezi University, 2016. ]
[46] 贾瑞, 李君, 祝清哲, 等. 中国西北地区气溶胶的三维分布特征及其成因[J]. 中国沙漠, 2021, 41(3):34-43.
[46] [ Jia Rui, Li Jun, Zhu Qingzhe, et al. Three-dimensional distribution and formation causes of aerosols over northwest China[J]. Journal of Desert Research, 2021, 41(3):34-43. ]
[47] 谭婷, 王天竺. 1961—2015年塔里木盆地夏季沙尘天气时空特征及环流背景分析[J]. 防灾科技学院学报, 2020, 22(3):69-76.
[47] [ Tan Ting, Wang Tianzhu. Analysis on spatial and temporal characteristics and circulation background of dust weather in Tarim Basin in summer from 1961 to 2015[J]. Journal of Institute of Disaster Prevention, 2020, 22(3):69-76. ]
Outlines

/