Climate Change

Time scale effect of hydrogen and oxygen stable isotopes in precipitation and source of water vapor in Yinchuan Plain

  • Yang GAO ,
  • Lei HAN ,
  • Yonggui HAN ,
  • Xiaoyu HUANG ,
  • Ling PENG ,
  • Lili LIU
Expand
  • 1. School of Geography and Planning, Ningxia University, Yinchuan 750021, Ningxia, China
    2. Joint International Research Laboratory of China-Arab Featured Resources and Environmental Governance in Arid Region, Yinchuan 750021, Ningxia, China
    3. Ningxia Key Laboratory of Resource Assessment and Environment Regulation in Arid Region, Yinchuan 750021, Ningxia, China
    4. School of Agriculture, Ningxia University, Yinchuan 750021, Ningxia, China

Received date: 2021-03-11

  Revised date: 2021-08-24

  Online published: 2022-01-21

Abstract

The environmental effects of stable isotope and water vapor precipitation sources in the Yinchuan Plain, Ningxia Hui Autonomous Region, China, were studied using backward trajectory clustering analysis, the potential source contribution function, and the concentration-weighted trajectory analysis method to resolve vapor sources and potential evaporation source areas. Our results showed that (1) there were obvious seasonal variations in the hydrogen-oxygen stable isotope composition of precipitation in the Yinchuan Plain, and the hydrogen-oxygen stable isotope composition of precipitation in the winter half-year (-38.6‰±51.6‰ and -4.5‰±5.2‰) was significantly more positive than that in the summer half-year (-40.9‰±17.7‰ and -5.7‰±3.0‰); The local meteoric water line was greatly improved. The slope and intercept of the LMWL in the summer half-year (5.43, -9.71) were lower than that in the winter half-year (9.10, 5.08), and that of the whole year (6.79, -2.79). (2) The temperature effect was significant at three time periods: (0.473±0.210) ‰·°C-1, (0.258±0.037)‰·°C-1 and (0.211±0.031)‰·C-1 under the entire year, summer and winter half-year, respectively, the precipitation effect was not significant. (3) During the summer and winter half-years, the vapor sources of precipitation in the study area were primarily westerly water vapor, but were also influenced by local evaporative vapor. In the summer half-year, the evaporative vapor source areas were mainly distributed in the area surrounding the study area and the western, southwestern, and southern parts of the study area; During the winter half-year, they were mostly found in the area surrounding the study area and to the west. The study’s findings may provide a theoretical foundation for selecting methods for identifying water vapor sources in arid regions using stable isotope techniques.

Cite this article

Yang GAO , Lei HAN , Yonggui HAN , Xiaoyu HUANG , Ling PENG , Lili LIU . Time scale effect of hydrogen and oxygen stable isotopes in precipitation and source of water vapor in Yinchuan Plain[J]. Arid Land Geography, 2022 , 45(1) : 91 -102 . DOI: 10.12118/j.issn.1000–6060.2021.122

References

[1] 汪芳, 苗长虹, 刘峰贵, 等. 黄河流域人居环境的地方性与适应性: 挑战和机遇[J]. 自然资源学报, 2021, 36(1):1-26.
[1] [Wang Fang, Miao Changhong, Liu Fenggui, et al. The locality and adaptability of human settlements in the Yellow River Basin: Challenges and opportunities[J]. Journal of Natural Resources, 2021, 36(1):1-26. ]
[2] Gui J, Li Z X, Feng Q, et al. Environmental effect and spatiotemporal pattern of stable isotopes in precipitation on the transition zone between the Tibetan Plateau and arid region[J]. Science of the Total Environment, 2020, 749:141559, doi: 10.1016/j.scitotenv. 2020.141559.
[3] 范广群, 张德忠, 张建明, 等. 银川平原水体氢氧同位素及主要水化学参数特征[J]. 干旱区研究, 2018, 35(5):1040-1049.
[3] [Fan Guangqun, Zhang Dezhong, Zhang Jianming, et al. Hydrogen and oxygen isotopic and hydrochemical characteristics of water in Yinchuan Plain[J]. Arid Zone Research, 2018, 35(5):1040-1049. ]
[4] 郝帅, 李发东, 李艳红, 等. 艾比湖流域降水、地表水和地下水稳定同位素特征[J]. 干旱区地理, 2021, 44(4):934-942.
[4] [Hao Shuai, Li Fadong, Li Yanhong, et al. Stable isotopes characteristics of precipitation, surface water and groundwater in Ebinur Lake Basin[J]. Arid Land Geography, 2021, 44(4):934-942. ]
[5] 王邺凡, 余武生, 张寅生, 等. 印度河上游Bagrot山谷降水稳定同位素变化及与水汽来源的关系[J]. 干旱区地理, 2019, 42(2):252-262.
[5] [Wang Yefan, Yu Wusheng, Zhang Yinsheng, et al. Precipitation stable isotope variation and its relationship with moisture sources in Bagrot Valley of upper Indus Basin[J]. Arid Land Geography, 2019, 42(2):252-262. ]
[6] 马兴刚, 贾文雄, 丁丹, 等. 祁连山东部大气降水δ17O变化特征及水汽输送[J]. 干旱区地理, 2019, 42(3):517-525.
[6] [Ma Xinggang, Jia Wenxiong, Ding Dan, et al. Variation characteristics of δ17O in precipitation and moisture transports in eastern Qilian Mountains[J]. Arid Land Geography, 2019, 42(3):517-525. ]
[7] 常昕, 章新平, 戴军杰, 等. 不同时间尺度氢氧稳定同位素效应的比较——以长沙降水为例[J]. 第四纪研究, 2021, 41(1):99-110.
[7] [Chang Xin, Zhang Xinping, Dai Junjie, et al. Comparison of stable isotope effects under different time scales: Taking Changsha as an example[J]. Quaternary Sciences, 2021, 41(1):99-110. ]
[8] Salamalikis V, Argiriou A A, Dotsika E. Stable isotopic composition of atmospheric water vapor in Patras, Greece: A concentration weighted trajectory approach[J]. Atmospheric Research, 2015, 152:93-104.
[9] 孟鸿飞, 张明军, 王圣杰, 等. 黑河上游降水同位素特征及其水汽来源分析[J]. 冰川冻土, 2020, 42(3):937-951.
[9] [Meng Hongfei, Zhang Mingjun, Wang Shengjie, et al. Precipitation isotope characteristics and water vapor source analysis in the upper reaches of the Heihe River[J]. Journal of Glaciology and Geocryology, 2020, 42(3):937-951. ]
[10] 马洪云, 李成柱, 王化齐, 等. 银川盆地水体氢氧稳定同位素特征分析[J]. 西北地质, 2019, 52(2):218-226.
[10] [Ma Hongyun, Li Chengzhu, Wang Huaqi, et al. Hydrogen and oxygen isotopic compositions of water bodies at Yinchuan Basin, China[J]. Northwestern Geology, 2019, 52(2):218-226. ]
[11] 李晓明, 孙从建, 孙九林, 等. 基于遥感信息的黄土高原主要灌溉农业分布区生态安全特征[J]. 应用生态学报, 2021, 32(9):3177-3184.
[11] [Li Xiaoming, Sun Congjian, Sun Jiulin, et al. Ecological security characteristics of mainly irrigated agricultural areas on the Loess Plateau based on remote sensing information[J]. Chinese Journal of Applied Ecology, 2021, 32(9):3177-3184. ]
[12] GB/T13580.2-1992. 大气降水样品的采集与保存[S]. 北京: 国家环境保护局, 国家技术监督局, 1993.
[12] [GB/T13580.2-1992. Collection and preservation of the wet precipitation sample[S]. Beijing: The State Bureau of Environment and Protection, The State Bureau of Quality and Technical Supervision, 1993. ]
[13] 张自超, 丁悌平. 关于同位素地质测试数据的数据处理及结果表示[J]. 岩矿测试, 2000, 19(1):77-79.
[13] [Zhang Zichao, Ding Tiping. Data processing and expression for analytical results in isotope geology[J]. Rock and Mineral Analysis, 2000, 19(1):77-79. ]
[14] Dansgaard W. Stable isotopes in precipitation[J]. Tellus, 1964, 16(4):436-468.
[15] Peng T R, Liu K K, Wang C H, et al. A water isotope approach to assessing moisture recycling in the island-based precipitation of Taiwan: A case study in the western Pacific[J]. Water Resources Research, 2011, 47(8):1-11.
[16] Friedman I, O’Neil J R. Compilation of stable isotope fractionation factors of geochemical interest[M]. US: Department of the Interior, 1977, 1-12.
[17] 郭小燕, 冯起, 李宗省, 等. 敦煌盆地降水稳定同位素特征及水汽来源[J]. 中国沙漠, 2015, 35(3):715-723.
[17] [Guo Xiaoyan, Feng Qi, Li Zongxing, et al. Variation of stable isotopes and moisture sources in precipitation at the Dunhuang Basin in northwest China[J]. Journal of Desert Research, 2015, 35(3):715-723. ]
[18] 柳鉴容, 宋献方, 袁国富, 等. 中国东部季风区大气降水δ18O的特征及水汽来源[J]. 科学通报, 2009, 54(22):3521-3531.
[18] [Liu Jianrong, Song Xianfang, Yuan Guofu, et al. Characteristics of δ18O in precipitation over eastern monsoon China and the water vapor sources[J]. Chinese Science Bulletin, 2009, 54(22):3521-3531. ]
[19] 郑新军, 李彦, 徐利岗. 乌鲁木齐降水中δ18O的温度和降水强度效应的季节转换[J]. 中国沙漠, 2016, 36(2):491-498.
[19] [Zheng Xinjun, Li Yan, Xu Ligang. Seasonal transition between temperature and precipitation intensity effect on precipitation δ18O in Urumqi, China[J]. Journal of Desert Research, 2016, 36(2):491-498. ]
[20] Wang Y Q. MeteoInfo: GIS software for meteorological data visualization and analysis[J]. Meteorological Applications, 2014, 21(2):360-368.
[21] 李江萍, 杜亮亮, 张宇, 等. 玛曲地区夏季强降水的环流分型及水汽轨迹分析[J]. 高原气象, 2012, 31(6):1582-1590.
[21] [Li Jiangping, Du Liangliang, Zhang Yu, et al. Analysis on circulation pattern and water vapor source of heavy precipitation in Maqu Region[J]. Plateau Meteorology, 2012, 31(6):1582-1590. ]
[22] 刘洁遥, 张福平, 冯起, 等. 陕甘宁地区降水稳定同位素特征及水汽来源[J]. 应用生态学报, 2019, 30(7):2191-2200.
[22] [Liu Jieyao, Zhang Fuping, Feng Qi, et al. Stable isotopes characteristics of precipitation over Shaanxi-Gansu-Ningxia and its water vapor sources[J]. Chinese Journal of Applied Ecology, 2019, 30(7):2191-2200. ]
[23] 张百娟, 李宗省, 王昱, 等. 祁连山北坡中段降水稳定同位素特征及水汽来源分析[J]. 环境科学, 2019, 40(12):5272-5285.
[23] [Zhang Baijuan, Li Zongxing, Wang Yu, et al. Characteristics of stable isotopes and analysis of water vapor sources of precipitation at the northern slope of the Qilian Mountains[J]. Environmental Science, 2019, 40(12):5272-5285. ]
[24] Gat J R. Atmospheric water balance: The isotopic perspective[J]. Hydrological Processes, 2015, 14(8):1357-1369.
[25] Trenberth K E. Atmospheric moisture residence times and cycling: Implications for rainfall rates and climate change[J]. Climatic Change, 1998, 39(4):667-694.
[26] Chanmin K, Lucas R F H, Christine C, et al. Health effects of power plant emissions through ambient air quality[J]. Journal of the Royal Statistical Society: Series A (Statistics in Society), 2020, 183(4):1677-1703.
[27] 陈虹颖, 赵新锋, 何志东, 等. 2000—2016年珠海市酸雨变化特征及酸雨概念模型[J]. 环境科学学报, 2020, 40(6):1998-2006.
[27] [Chen Hongying, Zhao Xinfeng, He Zhidong, et al. Variation characteristics and concept model of acid rain in Zhuhai City during 2000 to 2016[J]. Acta Scientiae Circumstantiae, 2020, 40(6):1998-2006. ]
[28] Polissar A V, Hopke P K, Harris J M. Source regions for atmospheric aerosol measured at Barrow, Alaska[J]. Environmental Science & Technology, 2001, 35(21):4214-4226.
[29] Hsu Y K, Holsen T M, Hopke P K. Comparison of hybrid receptor models to locate PCB sources in Chicago[J]. Atmospheric Environment, 2003, 37(4):545-562.
[30] 任行阔, 高晶, 杨育龙, 等. 慕士塔格地区大气水汽氢氧稳定同位素季节内变化特征及影响因素分析[J]. 冰川冻土, 2021, 43(2):331-341.
[30] [Ren Xingkuo, Gao Jing, Yang Yulong, et al. Intra-seasonal characteristics of atmospheric water vapor stable isotopes at Muztagata and its climate controls[J]. Journal of Glaciology and Geocryology, 2021, 43(2):331-341. ]
[31] 胡勇博, 肖薇, 钱雨妃, 等. 水汽源地和局地蒸发对大气降水氢氧稳定同位素组分的影响[J]. 环境科学, 2019, 40(2):573-581.
[31] [Hu Yongbo, Xiao Wei, Qian Yufei, et al. Effects of water vapor source and local evaporation on the stable hydrogen and oxygen isotopic compositions of precipitation[J]. Environmental Science, 2019, 40(2):573-581. ]
[32] 陈粉丽, 张明军, 马潜, 等. 兰州及其周边区域大气降水δ18O特征及其水汽来源[J]. 环境科学, 2013, 34(10):3755-3763.
[32] [Chen Fenli, Zhang Mingjun, Ma Qian, et al. Characteristics of δ18O in precipitation and water vapor sources in Lanzhou City and its surrounding area[J]. Environmental Science, 2013, 34(10):3755-3763. ]
[33] 王家鑫, 张明军, 张宇, 等. 基于稳定同位素示踪的黄河兰州段河漫滩土壤水特征分析[J]. 干旱区地理, 2021, 44(5):1449-1458.
[33] [Wang Jiaxin, Zhang Mingjun, Zhang Yu, et al. Soil water characteristics analysis of floodplain in the Yellow River reach of Lanzhou based on stable isotopes tracing[J]. Arid Land Geography, 2021, 44(5):1449-1458.
[34] 车存伟, 张明军, 王圣杰, 等. 黄河流域降水稳定同位素的云下二次蒸发效应[J]. 干旱区地理, 2019, 42(4):790-798.
[34] [Che Cunwei, Zhang Mingjun, Wang Shengjie, et al. Influence of sub-cloud secondary evaporation on stable isotope composition in precipitation in the Yellow River Basin[J]. Arid Land Geography, 2019, 42(4):790-798. ]
[35] 李小飞, 张明军, 李亚举, 等. 西北干旱区降水中δ18O变化特征及其水汽输送[J]. 环境科学, 2012, 33(3):711-719.
[35] [Li Xiaofei, Zhang Mingjun, Li Yaju, et al. Characteristics of δ18O in precipitation and moisture transports over the arid region in northwest China[J]. Environmental Science, 2012, 33(3):711-719. ]
[36] 孙从建, 张子宇, 陈伟, 等. 亚洲中部高山降水稳定同位素空间分布特征[J]. 干旱区研究, 2019, 36(1):19-28.
[36] [Sun Congjian, Zhang Ziyu, Chen Wei, et al. Spatial distribution of precipitation stable isotopes in the alpine zones in Central Asia[J]. Arid Zone Research, 2019, 36(1):19-28. ]
[37] 刘宏伟, 徐明, 管清浩. 银川地区大气降水中氢氧稳定同位素的变化特征及影响因素分析[J]. 水科学与工程技术, 2012(1):88-90.
[37] [Liu Hongwei, Xu Ming, Guan Qinghao. Variation characteristics and influencing factors of hydrogen-oxygen stable isotope in precipitation of Yinchuan Area[J]. Water Sciences and Engineering Technology, 2012(1):88-90. ]
Outlines

/