生物与土壤

努尔苏丹樟子松人工林土壤粒度组成特征研究

  • 娄泊远 ,
  • 王永东 ,
  • 周娜 ,
  • 闫晋升 ,
  • 艾柯代·艾斯凯尔
展开
  • 1.中国科学院新疆生态与地理研究所,新疆 乌鲁木齐 830011
    2.国家荒漠-绿洲生态建设工程技术研究中心,新疆 乌鲁木齐 830011
    3.中国科学院大学,北京 100049
娄泊远(1995-),男,硕士研究生,主要从事水土保持和荒漠化防治相关研究. E-mail: louboyuan18@mails.ucas.ac.cn

收稿日期: 2021-03-11

  修回日期: 2021-09-09

  网络出版日期: 2022-01-21

基金资助

中国科学院战略性先导科技专项(A类)(XDA20030102);中国科学院关键技术人才项目(“一带一路”荒漠化防治技术模式研究)资助

Soil particle size composition characteristics of Pinus sylvestris plantations in Nur-Sultan City

  • Boyuan LOU ,
  • Yongdong WANG ,
  • Na ZHOU ,
  • Jinsheng YAN ,
  • ASKAR Akida
Expand
  • 1. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2. National Engineering Technology Research Center for Desert-Oasis Ecological Construction, Urumqi 830011, Xinjiang, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2021-03-11

  Revised date: 2021-09-09

  Online published: 2022-01-21

摘要

为了揭示努尔苏丹不同林龄樟子松人工林对土壤粒度组成的影响,通过野外采样与室内分析相结合,分析了努尔苏丹周边不同林龄樟子松人工林土壤粒度与分形维数特征,研究了分形维数与土壤特性之间的关系。结果表明:(1) 研究区土壤粒度组成以粉粒为主,砂粒次之,黏粒最少,樟子松人工林的种植能够显著提升土壤表层细颗粒物质含量。不同林龄人工林深层土壤颗粒含量差异不显著。种植樟子松人工林对土壤粒度的影响主要在表层区域。(2) 土壤分形维数变化在2.059~2.569之间,在人工林生长过程中分形维数呈现先增大后减小的趋势,并在种植年限为15 a时达到最大。土壤分形维数与黏粒、粉粒具有正相关性,20 μm粒径是反映研究区人工林土壤分形维数的临界粒径。(3) 研究区土壤分形维数与土壤有机质、全氮含量呈极显著正相关关系,土壤分形维数可以用来评价土壤的养分状况。研究结果可以为努尔苏丹人工林建设和生态恢复提供理论依据。

本文引用格式

娄泊远 , 王永东 , 周娜 , 闫晋升 , 艾柯代·艾斯凯尔 . 努尔苏丹樟子松人工林土壤粒度组成特征研究[J]. 干旱区地理, 2022 , 45(1) : 219 -225 . DOI: 10.12118/j.issn.1000–6060.2021.123

Abstract

Nur-Sultan City is located in northern Kazakhstan, and the local government has planted a large area of plantation forests on the desert steppe around the city. Soil particle size composition is one of the basic physical properties of soil, which affects the changes of soil nutrients and moisture. To explore the effects of different forest ages of Pinus sylvestris plantations on soil particle size composition, this study analyzed the characteristics of soil particle size and fractal dimension of plantations around Nur-Sultan City through field sampling and indoor analysis, and examined the relationship between fractal dimension and soil characteristics. Results showed the following: (1) The soil particle size composition in the study area was dominated by silt, followed by sand, and clay was the least. The planting of a P. sylvestris plantation could significantly improve the content of fine particles in the soil surface. The deep soil particle content of different forest age plantation was not significant. The effect of planting P. sylvestris plantation on soil particle size is mainly observed in the surface area. (2) The variation of soil fractal dimension was between 2.059 and 2.569. During the growth of plantation, the fractal dimension increased first and then decreased, and reached the maximum on the 15th planting year. Soil fractal dimension was positively correlated with clay and silt, and 20 μm was the critical particle size that reflected the fractal dimension of plantation soil in the study area. (3) The soil fractal dimension in the study area was significantly positively correlated with soil organic matter and total nitrogen content, and the soil fractal dimension could be used to evaluate the soil nutrient status. The results can provide a theoretical basis for plantation construction and ecological restoration in Nur-Sultan City.

参考文献

[1] 柳思勉. 干扰强度对会同杉木林内环境特征的影响研究[D]. 长沙: 湖南大学, 2016.
[1] [Liu Simian. Study on the effect of disturbance intensity on environmental characteristics of Chinese fir plantation in Huitong[D]. Changsha: Hunan University, 2016. ]
[2] Wang D, Fu B J, Zhao W W, et al. Multifractal characteristics of soil particle size distribution under different land-use types on the Loess Plateau, China[J]. Catena, 2007, 72(1):29-36.
[3] Hu Y F, Liu J Y, Zhuang D F, et al. Fractal dimension of soil particlesize distribution under different land use/land coverage[J]. Acta Pedologica Sinica, 2005, 42(2):336-339.
[4] 桂东伟, 雷加强, 曾凡江, 等. 绿洲农田不同深度土壤粒径分布特性及其影响因素——以策勒绿洲为例[J]. 干旱区研究, 2011, 28(4):622-629.
[4] [Gui Dongwei, Lei Jiaqiang, Zeng Fanjiang, et al. Analysis on soil PSD and its affecting factors at different depths in oasis farmland: A case study in the Qira Oasis[J]. Arid Zone Research, 2011, 28(4):622-629. ]
[5] 王德, 傅伯杰, 陈利顶, 等. 不同土地利用类型下土壤粒径分形分析——以黄土丘陵沟壑区为例[J]. 生态学报, 2007, 27(7):3081-3089.
[5] [Wang De, Fu Bojie, Chen Liding, et al. Fractal analysis on soil particle size distributions under different land-use types: A case study in the loess hilly areas of the Loess Plateau, China[J]. Acta Ecologica Sinica, 2007, 27(7):3081-3089. ]
[6] Huang G, Zhang R. Evaluation of soil water retention curve with the pore-solid fractal model[J]. Geoderma, 2005, 127(1-2):52-61.
[7] Montero E. Rényi dimensions analysis of soil particle-size distributions[J]. Ecological Modelling, 2005, 182(3-4):305-315.
[8] 袁杰, 曹广超, 鄂崇毅, 等. 环青海湖表层土壤沉积物粒度分布特征及其指示意义[J]. 水土保持研究, 2015, 22(3):150-154.
[8] [Yuan Jie, Zeng Guangchao, E Chongyi, et al. Grain size distributions of the surface soil deposit around Qinghai Lake and its implications[J]. Research of Soil and Water Conservation, 2015, 22(3):150-154. ]
[9] 闫玉春, 唐海萍, 张新时, 等. 基于土壤粒度分析的草原风蚀特征探讨[J]. 中国沙漠, 2010, 30(6):1263-1268.
[9] [Yan Yuchun, Tang Haiping, Zhang Xinshi, et al. A probe into grassland wind erosion based on the analysis of soil particle size[J]. Journal of Desert Research, 2010, 30(6):1263-1268. ]
[10] Tyler S W, Wheatcraft S W, et al. Application of fractal mathematics to soil water retention estimation[J]. Soil Science Society of America Journal, 1989, 53(4):987-996.
[11] 王国梁, 周生路, 赵其国. 土壤颗粒的体积分形维数及其在土地利用中的应用[J]. 土壤学报, 2005, 42(4):545-550.
[11] [Wang Guoliang, Zhou Shenglu, Zhao Qiguo. Volume fractal dimension of soil particles and its applications to land use[J]. Acta Pedologica Sinica, 2005, 42(4):545-550. ]
[12] 杨培岭, 罗远培, 石元春. 用粒径的重量分布表征的土壤分形特征[J]. 科学通报, 1993, 38(20):1896-1899.
[12] [Yang Peiling, Luo Yuanpei, Shi Yuanchun. Soil fractal characteristics characterized by volumetric weight distribution[J]. Chinese Science Bulletin, 1993, 38(20):1896-1899. ]
[13] 苏敏, 丁国栋, 高广磊, 等. 呼伦贝尔沙地樟子松人工林土壤颗粒多重分形特征[J]. 干旱区资源与环境, 2018, 32(11):129-135.
[13] [Su Min, Ding Guodong, Gao Guanglei, et al. Multi-fractal analysis of soil particle size distribution of Pinus sylvestris var. mongolica plantations in Hulunbeier Sandy Land[J]. Journal of Arid Land Resources and Environment, 2018, 32(11):129-135. ]
[14] 黄刚, 赵学勇, 苏延桂, 等. 科尔沁沙地樟子松人工林对微环境改良效果的评价[J]. 干旱区研究, 2008, 25(2):212-218.
[14] [Huang Gang, Zhao Xueyong, Su Yangui, et al. Assesment on the effects of Pinus sylvestris var. mongolica plantation on microenvironment improvement in the Horqin Sandy Land[J]. Arid Zone Research, 2008, 25(2):212-218. ]
[15] Chen X, Zhou J. Volume-based soil particle fractal relation with soil erodibility in a small watershed of purple soil[J]. Environmental Earth Sciences, 2013, 70(4):1735-1746.
[16] 热依拉·木民, 玉米提·哈力克, 塔依尔江·艾山, 等. 基于分形维数的不同林龄新疆杨对土壤理化特性的影响分析[J]. 土壤通报, 2018, 49(2):313-319.
[16] [Mumin Reyila, Halik Umut, Aishan Tayierjiang, et al. Influence of different aged Populus alba var. pyramidalis on soil physicochemical properties based on fractal dimension[J]. Chinese Journal of Soil Science, 2018, 49(2):313-319. ]
[17] 王贤, 张洪江, 程金花, 等. 重庆四面山几种林地土壤颗粒分形特征及其影响因素[J]. 水土保持学报, 2011, 25(3):154-159.
[17] [Wang Xian, Zhang Hongjiang, Cheng Jinhua, et al. Fractal characteristics and related affecting factors of particle size distribution of different forest soil in Simian Mountains, Chongqing[J]. Journal of Soil and Water Conservation, 2011, 25(3):154-159. ]
[18] 孙梅, 孙楠, 黄运湘, 等. 长期不同施肥红壤粒径分布的多重分形特征[J]. 中国农业科学, 2014, 47(11):2173-2181.
[18] [Sun Mei, Sun Nan, Huang Yunxiang, et al. Multifractal characterization of soil particle size distribution under long-term different fertilizations in upland red soil[J]. Scientia Agricultura Sinica, 2014, 47(11):2173-2181. ]
[19] 鲍士旦. 土壤农化分析[M]. 第三版. 北京: 中国农业出版社, 2008.
[19] [Bao Shidan. Study of analysis of soil and agrochemistry[M]. 3rd ed. Beijing: China Agricuture Press, 2008. ]
[20] 贾萌萌, 张忠良, 雷加强, 等. 塔里木沙漠公路防护林地土壤粒径分布的分形特征[J]. 干旱区研究, 2015, 32(4):674-679.
[20] [Jia Mengmeng, Zhang Zhongliang, Lei Jiaqiang, et al. Fractal characteristics of soil particle size distribution in protection forest of Tarim Desert Highway[J]. Arid Zone Research, 2015, 32(4):674-679. ]
[21] 石占飞, 王力, 王建国. 陕北神木矿区土壤颗粒体积分形特征及意义[J]. 干旱区研究, 2011, 28(3):394-400.
[21] [Shi Zhanfei, Wang Li, Wang Jianguo. Volume fractal characteristics and significance of soil particles in the Shenmu Colliery in north Shaanxi Province[J]. Arid Zone Research, 2011, 28(3):394-400. ]
[22] 陈宇轩, 张飞岳, 高广磊, 等. 科尔沁沙地樟子松人工林土壤粒径分布特征[J]. 干旱区地理, 2020, 43(4):1051-1058.
[22] [Chen Yuxuan, Zhang Feiyue, Gao Guanglei, et al. Soil particle size distribution of Pinus sylvestris var. mongolica plantations in the Horqin Sandy Land[J]. Arid Land Geography, 2020, 43(4):1051-1058. ]
[23] 贾晓红, 李新荣, 李元寿. 干旱沙区植被恢复过程中土壤颗粒分形特征[J]. 地理研究, 2007, 26(3):518-525.
[23] [Jia Xiaohong, Li Xinrong, Li Yuanshou. Fractal dimension of soil particle size distribution during the process of vegetation restoration in arid sand dune area[J]. Geographical Research, 2007, 26(3):518-525. ]
[24] Yu K Y, Yao X, Deng Y b, et al. Effects of stand age on soil respiration in Pinus massoniana plantations in the hilly red soil region of southern China[J]. Catena, 2019, 178(5):313-321.
[25] Hupy J P. Influence of vegetation cover and crust type on wind-blown sediment in a semi-arid climate[J]. Journal of Arid Environments, 2004, 58(2):167-179.
[26] 刘昀东, 高广磊, 丁国栋, 等. 风蚀荒漠化地区土壤质量演变研究进展[J]. 南京林业大学学报(自然科学版), 2017, 41(5):161-168.
[26] [Liu Yundong, Gao Guanglei, Ding Guodong, et al. Soil quality in wind erosion desertified regions: A review[J]. Journal of Nanjing Forestry University (Natural Science Edition), 2017, 41(5):161-168. ]
[27] 曹成有, 蒋德明, 全贵静, 等. 科尔沁沙地小叶锦鸡儿人工固沙区土壤理化性质的变化[J]. 水土保持学报, 2004, 18(6):108-111, 131.
[27] [Cao Chengyou, Jiang Deming, Quan Guijing, et al. Soil physical and chemical characters changes of Caragana microphylla plantation for sand fixation in Keerqin Sandy Land[J]. Journal of Soil and Water Conservation, 2004, 18(6):108-111, 131. ]
[28] 刘金福, 洪伟, 吴承祯. 中亚热带几种珍贵树种林分土壤团粒结构的分维特征[J]. 生态学报, 2002, 22(2):197-205.
[28] [Liu Jinfu, Hong Wei, Wu Chengzhen. Fractal features of soil clusters under some precious hardwood stands in the central subtropical region, China[J]. Acta Ecologica Sinica, 2002, 22(2):197-205. ]
[29] 李毅, 李敏, 曹伟, 等. 农田土壤颗粒尺寸分布分维及颗粒体积分数的空间变异性[J]. 农业工程学报, 2010, 26(1):94-102.
[29] [Li Yi, Li Min, Cao Wei, et al. Spatial variability of fractal dimension for soil particle size distribution and particle volume percentage in farmlands[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(1):94-102. ]
[30] 肖冬冬, 史正涛, 刘新有, 等. 西双版纳橡胶林土壤颗粒体积分形维数特征[J]. 热带作物学报, 2017, 38(5):817-823.
[30] [Xiao Dongdong, Shi Zhengtao, Liu Xinyou, et al. Fractal dimension of soil particle volume in rubber forest of Xishuangbanna[J]. Chinese Journal of Tropical Crops, 2017, 38(5):817-823. ]
[31] 雷泽勇, 于东伟, 周凤艳, 等. 樟子松人工林营建对土壤颗粒组成变化的影响[J]. 生态学报, 2020, 40(15):5367-5376.
[31] [Lei Zeyong, Yu Dongwei, Zhou Fengyan, et al. Effects of afforestation with Pinus sylvestris var. mongolica on change of soil particle size distribution in sandy land[J]. Acta Ecologica Sinica, 2020, 40(15):5367-5376. ]
文章导航

/