不同演替阶段白刺灌丛沙堆土壤因子与叶功能性状关系研究
收稿日期: 2021-03-26
修回日期: 2021-10-18
网络出版日期: 2022-01-21
基金资助
甘肃省青年科技基金计划项目(20JR10RA469);国家青年科学基金项目(31700339);国家自然科学基金项目(31760238);国家自然科学基金项目(31860116);国家自然科学基金项目(31960334);甘肃省自然科学基金项目(20JR5RA096);中国科学院“西部之光”项目资助
Relationship between soil factors and leaf functional traits of Nitraria tangutorum shrub at different succession stages
Received date: 2021-03-26
Revised date: 2021-10-18
Online published: 2022-01-21
植物功能性状与环境之间的关系是功能性状研究的重点,环境因子驱使植物功能性状发生变化,进而推动群落发生演替。本研究以民勤不同演替阶段(发育阶段、稳定阶段、衰退阶段、严重衰退阶段)白刺(Nitraria tangutorum)灌丛沙堆为研究对象,分析不同演替阶段白刺叶功能性状差异及其与土壤因子的关系,旨在揭示白刺对干旱荒漠区土壤环境的适应策略。结果表明:(1) 不同演替阶段白刺叶厚度、叶干物质含量、叶全磷含量差异显著(P<0.05),其他的叶功能性状差异不显著(P>0.05)。白刺叶功能性状变异范围是0.39%~11.99%,均表现为弱变异,其中比叶面积最大(11.99%),叶全碳含量最小(0.39%)。(2) 白刺叶功能性状间存在一定的相关性;叶厚度、叶干物质含量、叶全氮含量可作为白刺叶功能性状变化的主要指标。(3) 除pH外,白刺灌丛沙堆土壤因子随退化程度的增加表现为先增加后降低的趋势,最小值出现在发育阶段,最大值出现在衰退阶段。土壤速效磷含量与全氮含量是影响白刺叶功能性状变化的主要土壤因子。上述研究结果深化了对白刺灌丛沙堆演替的认识,为荒漠生态系统恢复与保护提供重要参考依据。
王飞 , 郭树江 , 纪永福 , 张莹花 , 韩福贵 , 张裕年 , 张卫星 , 宋达成 . 不同演替阶段白刺灌丛沙堆土壤因子与叶功能性状关系研究[J]. 干旱区地理, 2022 , 45(1) : 176 -184 . DOI: 10.12118/j.issn.1000–6060.2021.141
The relationship between plant functional traits and the environment was the focus of functional traits research. Environmental factors drive the changes in plant functional traits, which in turn promote community succession. This study took Nitraria tangutorum shrubs at different succession stages (development stage, stable stage, decline stage, and severe recession phase) in Minqin County, Wuwei City, Gansu Province of China as the research objects and analyzed the differences in leaf functional traits and their relationships with soil factors, aiming to reveal the adaptation strategy of N. tangutorum to the arid desert soil environment. The results showed that: (1) There were significant differences in leaf thickness, leaf dry material content, and total phosphorus content among different succession stages (P<0.05), but no significant differences in other leaf functional traits (P>0.05). The variation range of leaf functional traits of N. tangutorum was 0.39%-11.99%, all showing weak variation, among which specific leaf area was the largest (11.99%) and total carbon content was the smallest (0.39%). (2) There was a certain correlation between the leaf functional traits of N. tangutorum. Leaf thickness, leaf dry material content, and leaf total nitrogen content, which could be used as the main index of leaf functional traits of N. tangutorum. (3) Except for pH, the soil factors of the N. tangutorum shrub increased first and then decreased as the degradation degree increased, and the minimum value appeared in the development stage while the maximum value appeared in the decline stage. The main soil factors affecting the leaf functional traits of N. tangutorum were soil available phosphorus and total nitrogen. The studies deepen our understanding of the succession of N. tangutorum shrubs and provide an important reference for restoring and protecting the desert ecosystem.
[1] | 胡耀升, 么旭阳, 刘艳红. 长白山不同演替阶段森林植物功能性状及其与地形因子间的关系[J]. 生态学报, 2014, 34(20):5915-5924. |
[1] | [Hu Yaosheng, Yao Xuyang, Liu Yanhong. The functional traits of forests at different succession stages and their relationship to terrain factors in Changbai Mountains[J]. Acta Ecologica Sinica, 2014, 34(20):5915-5924. ] |
[2] | Wright I J, Reich P B, Westoby M, et al. The worldwide leaf economics spectrum[J]. Nature, 2004, 428(6985):821-827. |
[3] | 李丹, 康萨如拉, 赵梦颖, 等. 内蒙古羊草草原不同退化阶段土壤养分与植物功能性状的关系[J]. 植物生态学报, 2016, 40(10):991-1002. |
[3] | [Li Dan, Kang Sarula, Zhao Mengying, et al. Relationships between soil nutrients and plant functional traits in different degradation stages of Leymus chinensis steppe in Nei Mongol, China[J]. Chinese Journal of Plant Ecology, 2016, 40(10):991-1002. ] |
[4] | Becknell J M, Powers J S. Stand age and soils as drivers of plant functional traits and aboveground biomass in secondary tropical dry forest[J]. Canadian Journal of Forest, 2014, 44(6):604-613. |
[5] | 丁佳, 吴茜, 闫慧, 等. 地形和土壤特性对亚热带常绿阔叶林内植物功能性状的影响[J]. 生物多样性, 2011, 19(2):158-167. |
[5] | [Ding Jia, Wu Qian, Yan Hui, et al. Effects of topographic variations and soil characteristics on plant functional traits in a subtropical evergreen broad-leaved forest[J]. Biodiversity Science, 2011, 19(2):158-167. ] |
[6] | 刘旻霞, 马建祖. 甘南高寒草甸植物功能性状和土壤因子对坡向的响应[J]. 应用生态学报, 2012, 23(12):3295-3300. |
[6] | [Liu Mingxia, Ma Jianzu. Responses of plant functional traits and soil factors to slope aspect in alpine meadow of south Gansu, northwest China[J]. Chinese Journal of Applied Ecology, 2012, 23(12):3295-3300. ] |
[7] | 施宇, 温仲明, 龚时慧, 等. 黄土丘陵区植物叶片与细根功能性状关系及其变化[J]. 生态学报, 2011, 31(22):6805-6815. |
[7] | [Shi Yu, Wen Zhongming, Gong Shihui, et al. Comparisons of relationships between leaf and fine root traits in hilly area of the Loess Plateau, Yanhe River Basin, Shaanxi Province, China[J]. Acta Ecologica Sinica, 2011, 31(22):6805-6814. ] |
[8] | 孙小妹, 何明珠, 周彬, 等. 霸王根茎叶非结构性碳与C:N:P计量特征对干旱的响应[J]. 干旱区地理, 2021, 44(1):240-249. |
[8] | [Sun Xiaomei, He Mingzhu, Zhou Bin, et al. Non-structural carbohydrates and C:N:P stoichiometry of roots, stems, and leaves of Zygophyllum xanthoxylon in responses to xeric condition[J]. Arid Land Geography, 2021, 44(1):240-249. ] |
[9] | 李晓菲, 李路, 常亚鹏, 等. 雪岭云杉林叶片碳氮化学计量特征及其与土壤理化因子的关系[J]. 干旱区地理, 2019, 42(3):599-605. |
[9] | [Li Xiaofei, Li Lu, Chang Yapeng, et al. Stoichiometric characteristics of leaf C and N and their correlation with soil physicochemical factors in Picea schrenkiana forests[J]. Arid Land Geography, 2019, 42(3):599-605. ] |
[10] | 张增可, 郑心炫, 林华贞, 等. 海岛植物不同演替阶段植物功能性状与环境因子的变化规律[J]. 生态学报, 2019, 39(10):3749-3758. |
[10] | [Zhang Zengke, Zheng Xinxuan, Lin Huazhen, et al. Summary of changes in plant functional traits and environmental factors in different successional stages of island plants[J]. Acta Ecologica sinica, 2019, 39(10):3749-3758. ] |
[11] | 王琇瑜, 黄晓霞, 和克俭, 等. 滇西北高寒草甸植物群落功能性状与土壤理化性质的关系[J]. 草业学报, 2020, 29(8):6-17. |
[11] | [Wang Xiuyu, Huang Xiaoxia, He Kejian, et al. The relationship between plant functional traits and soil physicochemical properties in alpine meadows in northwestern Yunnan Province, China[J]. Acta Prataculturae Sinica, 2020, 29(8):6-17. ] |
[12] | 靳虎甲, 马全林, 张有佳, 等. 石羊河下游白刺灌丛演替发育过程的土壤呼吸及其影响因素分析[J]. 中国沙漠, 2012, 32(1):140-147. |
[12] | [Jin Hujia, Ma Quanlin, Zhang Youjia, et al. Soil respiration of Nitraria tangutorum nebkhas at different evolvement stages in lower reaches of Shiyang River and its influencing factors[J]. Journal of Desert Research, 2012, 32(1):140-147. ] |
[13] | 孙涛, 韩福贵, 安富博, 等. 民勤荒漠绿洲过渡带白刺沙堆土壤呼吸空间异质特征[J]. 草业科学, 2017, 34(4):673-684. |
[13] | [Sun Tao, Han Fugui, An Fubo, et al. Spatial heterogeneity of soil respiration of Nitraria tangutorum nebkhas in the desert-oasis ecotone of Minqin[J]. Pratacultural Science, 2017, 34(4):673-684. ] |
[14] | 韩福贵, 孙涛, 郭树江, 等. 干旱荒漠区不同演替阶段白刺灌丛沙堆土壤呼吸特征及其影响因素分析[J]. 西北林学院学报, 2017, 32(5):1-7. |
[14] | [Han Fugui, Sun Tao, Guo Shujiang, et al. Characteristics of soil respiration of Nitraria tangutorum at different succession stages in desert areas & the influencing factors[J]. Journal of Northwest Forestry University, 2017, 32(5):1-7. ] |
[15] | 马全林, 卢琦, 魏林源, 等. 干旱荒漠白刺灌丛植被演替过程土壤种子库变化特征[J]. 生态学报, 2015, 35(7):2285-2294. |
[15] | [Ma Quanlin, Lu Qi, Wei Linyuan, et al. Varying characteristics of soil seed banks during the succession process of Nitraria tangutorum vegetation in an arid desert area[J]. Acta Ecologica Sinica, 2015, 35(7):2285-2294. ] |
[16] | 赵鹏, 徐先英, 屈建军, 等. 民勤绿洲-荒漠过渡带白刺群落空间分布及其环境解释[J]. 干旱区研究, 2016, 33(5):1003-1011. |
[16] | [Zhao Peng, Xu Xianying, Qu Jianjun, et al. Spatial distribution of Nitraria tangutorum communities and its environmental interpretations in the Minqin oasis-desert ecotone[J]. Arid Zone Research, 2016, 33(5):1003-1011. ] |
[17] | Du J H, Yan P, E Y H. Distribution patterns and characteristics of Nitraria tangutorum nebkha at its different evolvement stages in the Minqin County of Gansu Province[J]. Chinese Journal of Ecology, 2007, 26(8):1165-1170. |
[18] | Kuo S. Methods of soil analysis[M]. Madison, Wisconsin, USA: Soil Science Society of America, Inc., American Society of Agronomy, Inc., 1996: 869-919. |
[19] | 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 30-204. |
[19] | [Bao Shidan. Soil agrochemical analysis[M]. Beijing: China Agriculture Press, 2000: 30-204. ] |
[20] | 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1978: 508-510. |
[20] | [Institute of Soil Science, Chinese Academy of Sciences. Soil physical and chemical property analysis[M]. Shanghai: Shanghai Scientific and Technical Publishers, 1978: 508-510. ] |
[21] | 秦娟, 孔海燕, 刘华. 马尾松不同林型土壤C、N、P、K的化学计量特征[J]. 西北农林科技大学学报(自然科学版), 2016, 44(2):68-76. |
[21] | [Qin Juan, Kong Haiyan, Liu Hua. Stoichiometric characteristics of soil C, N, P and K in different Pinus massoniana forests[J]. Journal of Northwest Agriculture and Forestry University (Natural Science Edition), 2016, 44(2):68-76. ] |
[22] | 钟巧连, 刘立斌, 许鑫, 等. 黔中喀斯特木本植物功能性状变异及其适应策略[J]. 植物生态学报, 2018, 42(5):562-572. |
[22] | [Zhong Qiaolian, Liu Libin, Xu Xin, et al. Variations of plant functional traits and adaptive strategy of woody species in a Karst forest of central Guizhou Province, southwestern China[J]. Chinese Journal of Plant Ecology, 2018, 42(5):562-572. ] |
[23] | Tilman D. Plant strategies and the dynamics and structure of plant communities[M]. Princeton: Princeton University Press, 1998. |
[24] | Garnier E, Cortez J, Billès G, et al. Plant functional markers capture ecosystem properties during secondary succession[J]. Ecology, 2004, 85(9):2630-2637. |
[25] | Lajtha K, Michener R H. Stable isotopes in ecology and environmental science[M]. London: Blackwell Scientific Publications, 1994: 1-5. |
[26] | Chapin F S, Bloom A J, Field C B, et al. Plant responses to multiple environmental factors: Physiological ecology provides tools for studying how interacting environmental resources control plant growth[J]. Bioscience, 1987, 37(1):49-57. |
[27] | Cornwell W K, Schwilk D W, Ackerly D D. A trait-based test for habitat filtering: Convex hull volume[J]. Ecology, 2006, 87(6):1465-1471. |
[28] | Ohashi Y, Nakayama N, Saneoka H, et al. Effects of drought stress on photosynthetic gas exchange, chlorophyll fluorescence and stem diameter of soybean plants[J]. Biologia Plantarum, 2006, 50(1):138-141. |
[29] | 阎恩荣, 王希华, 周武. 天童常绿阔叶林演替系列植物群落的N:P化学计量特征[J]. 植物生态学报, 2008, 32(1):13-22. |
[29] | [Yan Enrong, Wang Xihua, Zhou Wu. N:P stoichiometry in secondary succession in evergreen broadleaved forest, Tiantong, east China[J]. Chinese Journal of Plant Ecology, 2008, 32(1):13-22. ] |
[30] | 韦兰英, 上官周平. 黄土高原不同演替阶段草地植被细根垂直分布特征与土壤环境的关系[J]. 生态学报, 2006, 26(11):3740-3748. |
[30] | [Wei Lanying, Shangguan Zhouping. Relationship between vertical distribution of fine root in different successional stages of herbaceous vegetation and soil environment in Loess Plateau[J]. Acta Ecologica Sinica, 2006, 26(11):3740-3748. ] |
[31] | 刘旻霞, 李俐蓉, 车应弟, 等. 高寒草甸不同演替阶段植物叶片功能性状研究[J]. 植物研究, 2019, 39(5):760-769. |
[31] | [Liu Mingxia, Li Lirong, Che Yingdi, et al. Functional traits of plant leaves at different succession stages in alpine meadow[J]. Bulletin of Botanical Research, 2019, 39(5):760-769. ] |
[32] | 王月, 李程, 李爱德, 等. 白刺沙堆退化与土壤水分的关系[J]. 生态学报, 2015, 35(5):1407-1421. |
[32] | [Wang Yue, Li Cheng, Li Aide, et al. The degradation of Nitraria dunes and soil water in Minqin Oasis[J]. Acta Ecologica Sinica, 2015, 35(5):1407-1421. ] |
[33] | 赵鹏, 徐先英, 纪永福, 等. 民勤绿洲边缘不同演替阶段白刺灌丛水分利用动态[J]. 干旱区资源与环境, 2019, 33(9):169-175. |
[33] | [Zhan Peng, Xu Xianying, Ji Yongfu, et al. Water utilization dynamics of Nitraria tangutorum nebkhas in different succession stages at the edge of Minqin Oasis[J]. Journal of Arid Land Resources and Environment, 2019, 33(9):169-175. ] |
[34] | 杨丽雯, 周海燕, 樊恒文, 等. 沙坡头人工固沙植被生态系统土壤恢复研究进展[J]. 中国沙漠, 2009, 29(6):1116-1123. |
[34] | [Yang Liwen, Zhou Haiyan, Fan Hengwen, et al. Advances of soil restoration research on artificial sand-binding vegetation ecosystem in Shapotou Desert region[J]. Journal of Desert Research, 2009, 29(6):1116-1123. ] |
[35] | 王平, 盛连喜, 燕红, 等. 植物功能性状与湿地生态系统土壤碳汇功能[J]. 生态学报, 2010, 30(24):6990-7000. |
[35] | [Wang Ping, Sheng Lianxi, Yan Hong, et al. Plant functional traits influence soil carbon sequestration in wetland ecosystem[J]. Acta Ecologica Sinica, 2010, 30(24):6990-7000. ] |
[36] | 张慧文, 马剑英, 孙伟, 等. 不同海拔天山云杉叶功能性状及其与土壤因子的关系[J]. 生态学报, 2010, 30(21):5747-5758. |
[36] | [Zhang Huiwen, Ma Jianying, Sun Wei, et al. Altitudinal variation in functional traits of Picea schrenkiana var. tianschanica and their relationship to soil factors in Tianshan Mountains, northwest China[J]. Acta Ecologica Sinica, 2010, 30(21):5747-5758. ] |
[37] | 王贵霞, 李传荣, 许景伟, 等. 沙质海岸5种植被类型土壤物理性状及其水源涵养功能[J]. 水土保持学报, 2005, 19(2):142-146. |
[37] | [Wang Guixia, Li Chuanrong, Xu Jingwei, et al. Soil properties and water conservation function of 5 types of vegetation on sandy coast[J]. Journal of Soil and Water Conservation, 2005, 19(2):142-146. ] |
[38] | 张凯, 侯继华, 何念鹏. 油松叶功能性状分布特征及其控制因素[J]. 生态学报, 2017, 37(3):736-749. |
[38] | [Zhang Kai, Hou Jihua, He Nianpeng. Leaf functional trait distribution and controlling factors of Pinus tabuliformis[J]. Acta Ecologica Sinica, 2017, 37(3):736-749. ] |
[39] | 曹靖, 杨晓东, 吕光辉, 等. 盐分对白刺光合作用及其叶功能性状的影响[J]. 新疆农业科学, 2015, 52(11):2065-2075. |
[39] | [Cao Jing, Yang Xiaodong, Lü Guanghui, et al. Effect of soil salinity on the photosynjournal and leaf functional traits of Nitraria[J]. Xinjiang Agricultural Sciences, 2015, 52(11):2065-2075. ] |
[40] | 苏波, 韩兴国, 李凌浩, 等. 中国东北样带草原区植物δ13C值及水分利用效率对环境梯度的响应[J]. 植物生态学报, 2000, 24(6):648-655. |
[40] | [Su Bo, Han Xingguo, Li Linghao, et al. Responses of δ13C value and water use effieicency of plant species to environmental gradients along the grassland zone of northeast China transect[J]. Chines Journal of Plant Ecology, 2000, 24(6):648-655. ] |
[41] | Stuiver M, Braziunas T F. Tree cellulose 13C/12C isotope ratios and climatic change[J]. Nature, 1987, 328(6125):58-60. |
/
〈 |
|
〉 |