地表过程研究

敦煌雅丹地层沉积物粒度特征初步研究

  • 梁晓磊 ,
  • 翟晓慧 ,
  • 牛清河 ,
  • 胡子豪 ,
  • 王天虎 ,
  • 刘万成
展开
  • 1.太原师范学院管理系,山西 晋中 030619
    2.中国科学院西北生态环境资源研究院敦煌戈壁荒漠研究站/甘肃省风沙灾害防治工程技术研究中心/中国科学院沙漠与沙漠化重点实验室,甘肃 兰州 730000
    3.中国科学院新疆生态与地理研究所,新疆 乌鲁木齐 830011
    4.敦煌市雅丹景区服务中心,甘肃 酒泉 736200
梁晓磊(1986-),男,讲师,博士,主要从事风沙地貌等方面的研究. E-mail: liangxl@lzb.ac.cn

收稿日期: 2021-04-19

  修回日期: 2021-11-15

  网络出版日期: 2022-01-21

基金资助

国家自然科学青年基金(42001007);国家自然科学基金(42171016)

Grain-size characteristics of yardang strata sediment in the Dunhuang Yardang National Geopark, northwest China

  • Xiaolei LIANG ,
  • Xiaohui ZHAI ,
  • Qinghe NIU ,
  • Zihao HU ,
  • Tianhu WANG ,
  • Wancheng LIU
Expand
  • 1. Department of Management, Taiyuan Normal University, Jinzhong 030619, Shanxi, China
    2. Dunhuang Gobi and Desert Research Station/Gansu Center for Sand Hazard Reduction and Engineering and Technology/Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, Gansu, China
    3. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    4. Dunhuang Yardang Scenic Area Service Center, Jiuquan 736200, Gansu, China

Received date: 2021-04-19

  Revised date: 2021-11-15

  Online published: 2022-01-21

摘要

雅丹地层是雅丹地貌发育前整个沉积体系的物质体现,记录了沉积过程中的大量信息,而沉积物分析则是解读其关键信息的基础。以敦煌雅丹地貌为研究对象,对其出露地层的沉积物粒度特征进行了初步研究。结果表明:(1) 敦煌雅丹地层沉积物粒径组成以粉沙为主,平均含量分别为41.08%(YA)、36.82%(YB)和35.41%(YC),自东向西含量递减,并含有较高比重的粗沙组分,空间变化趋势与粉沙相反。(2) 雅丹地层沉积物粒径组成和粒度参数纵向变化特征显著,剖面沉积段物质以粗(中沙、细沙为主)细(粉沙、黏土为主)旋回变化为特征,交界面与雅丹三级阶梯相吻合。(3) 雅丹地层是不同沉积环境和动力机制下形成的多种沉积物混杂堆积的结果,主要为风成、河流和湖泊环境交替沉积的结果,其中河流与湖泊沉积环境的亚环境类型更是复杂多样,有待进一步的深入研究。

本文引用格式

梁晓磊 , 翟晓慧 , 牛清河 , 胡子豪 , 王天虎 , 刘万成 . 敦煌雅丹地层沉积物粒度特征初步研究[J]. 干旱区地理, 2022 , 45(1) : 141 -152 . DOI: 10.12118/j.issn.1000–6060.2021.176

Abstract

The yardang strata is the material manifestation of the sedimentary system before the yardang landform developed. It collects a large amount of data about the deposition process, and sediment analysis is the foundation for interpreting its key findings. The research object in this paper is the Dunhuang yardang landforms in the Dunhuang Yardang Geopark, Gansu Province of northwest China and it is a preliminary study on the grain-size characteristics of the exposed strata sediments. The results indicated that: (1) The grain-size composition of Dunhuang yardang strata sediments is dominated by silt, with an average content of 41.08% (profile YA), 36.82% (profile YB), and 35.41% (profile YC), and its content decreases from east to west. It also contains coarse sand components with higher specific gravity, and the spatial change trend is the inverse of that of silty sand. (2) There are considerably vertical changes in the grain-size composition and parameters of the yardang strata, which are characterized by the alternation of coarse sand (primarily medium and fine sand) and fine sand (mainly silt and clay). Meanwhile, the interface is highly consistent with the shape of yardang’s three-level ladder. (3) The yardang stratum is the result of the mixed accumulation of various sediments formed under different sedimentary environments and dynamic mechanisms. It is primarily the result of alternate aeolian, fluvial, and lacustrine deposition. The subenvironmental types of fluvial and lacustrine sedimentary environments are the most complex and diverse, necessitating extensive research.

参考文献

[1] 吴正. 风沙地貌与治沙工程学[M]. 北京: 科学出版社, 2003.
[1] [Wu Zheng. Geomorphology of wind-drift sands and their controlled engineering[M]. Bejing: Science Press, 2003. ]
[2] 何清, 杨兴华, 霍文, 等. 库姆塔格沙漠粒度分布特征及环境意义[J]. 中国沙漠, 2009, 29(1):18-22.
[2] [He Qing, Yang Xinghua, Huo Wen, et al. Characteristics of sand granularity from Kumtag Desert and its environmental significance[J]. Journal of Desert Research, 2009, 29(1):18-22. ]
[3] 董治宝, 苏志珠, 钱广强, 等. 库姆塔格沙漠风沙地貌[M]. 北京: 科学出版社, 2011.
[3] [Dong Zhibao, Su Zhizhu, Qian Guangqiang, et al. Aeolian geomorphology of the Kumtagh Desert[M]. Bejing: Science Press, 2011. ]
[4] Liu B, Qu J, Ning D, et al. Grain-size study of aeolian sediments found east of Kumtagh Desert[J]. Aeolian Research, 2014, 13:1-6.
[5] Gutiérrez-Elorza M, Desir G, Gutiérrez-Santolalla F. Yardangs in the semiarid central sector of the Ebro Depression (NE Spain)[J]. Geomorphology, 2002, 44(1):155-170.
[6] 李继彦, 董治宝, 李恩菊, 等. 察尔汗盐湖雅丹地貌沉积物粒度特征研究[J]. 中国沙漠, 2012, 32(5):1187-1192.
[6] [Li Jiyan, Dong Zhibao, Li Enju, et al. Grain-size characteristics of the deposits from yadang landforms in the Charhan Salt Lake area[J]. Journal of Desert Research, 2012, 32(5):1187-1192. ]
[7] 郜学敏, 董治宝, 段争虎, 等. 柴达木盆地西北部长垄状雅丹沉积物粒度特征[J]. 中国沙漠, 2019, 39(2):79-85.
[7] [Gao Xuemin, Dong Zhibao, Duan Zhenghu, et al. Grain-size characteristics of long ridge yardangs in the northwestern Qaidam Basin, China[J]. Journal of Desert Research, 2019, 39(2):79-85. ]
[8] 林桂权, 林永崇, 王雪萍. 新疆罗布泊地区白龙堆雅丹地貌形态特征及成因研究[J]. 干旱区地理, 2021, 44(5):1309-1316.
[8] [Lin Guiquan, Lin Yongchong, Wang Xueping. Morphological characteristics and genesis of Bailongdui yardang landforms in Lop Nur, Xinjiang[J]. Arid Land Geography, 2021, 44(5):1309-1316. ]
[9] Dong Z, Lü P, Lu J, et al. Geomorphology and origin of yardangs in the Kumtagh Desert, northwest China[J]. Geomorphology, 2012, 139:145-154.
[10] 夏训诚. 罗布泊地区雅丹地貌的成因[M]. 北京: 科学出版社, 1987.
[10] [Xia Xuncheng. The cause analysis of yardangs in the Lop Nur[M]. Beijing: Sciences Press, 1987. ]
[11] 郑本兴, 张林源, 胡孝宏. 玉门关西雅丹地貌的分布和特征及形成时代问题[J]. 中国沙漠, 2002, 22(1):40-46.
[11] [Zheng Benxing, Zhang Linyuan, Hu Xiaohong. Ditribution and characteristics of yardnag landform and its formation period, west of Yumenguan, Gansu[J]. Journal of Desert Research, 2002, 22(1):40-46. ]
[12] 屈建军, 郑本兴, 俞祁浩, 等. 罗布泊东阿奇克谷地雅丹地貌与库姆塔格沙漠形成的关系[J]. 中国沙漠, 2004, 24(3):294-300.
[12] [Qu Jianjun, Zheng Benxing, Yu Qihao, et al. The yardang landform of Aqik Valley in the east of Lop-Nor and its relationship with the evolution of the Kumtagh Desert[J]. Journal of Desert Research, 2004, 24(3):294-300. ]
[13] 杨更. 新疆雅丹地貌分布特征浅析[J]. 四川地质学报, 2009, 29(增刊2):286-290.
[13] [Yang Geng. On distribution of the yardang in Xinjiang[J]. Acta Geologica Sichuan, 2009, 29(Suppl. 2):286-290. ]
[14] 牛清河, 屈建军, 李孝泽, 等. 雅丹地貌研究评述与展望[J]. 地球科学进展, 2011, 26(5):516-527.
[14] [Niu Qinghe, Qu Jianjun, Li Xiaoze, et al. Review and prospect of yardang landforms research[J]. Advances in Earth Science, 2011, 26(5):516-527. ]
[15] 王彦洁, 武法东, 李秀明, 等. 甘肃敦煌雅丹地貌沉积物常量元素地球化学特征及指示意义[J]. 干旱区资源与环境, 2019, 33(4):163-169.
[15] [Wang Yanjie, Wu Fadong, Li Xiuming, et al. Geochemical features of macro elements in yardang sediments in Dunhuang and the indicative meanings[J]. Journal of Arid Land Resources and Environment, 2019, 33(4):163-169. ]
[16] Liang X L, Niu Q H, Qu J J, et al. Applying end-member modeling to extricate the sedimentary environment of yardang strata in the Dunhuang Yardang National Geopark, northwestern China[J]. Catena, 2019, 180:238-251.
[17] 韩晋芳, 武法东, 蔡胤璐. 敦煌雅丹沉积物中重矿物特征及其物源指示意义[J]. 干旱区资源与环境, 2020, 34(4):137-143.
[17] [Han Jinfang, Wu Fadong, Cai Yinlu. Heavy mineral characteristics and its implication for provenance of yardang sediments in Dunhuang[J]. Journal of Arid Land Resources and Environment, 2020, 34(4):137-143. ]
[18] 牛清河, 屈建军, 安志山. 甘肃敦煌雅丹地质公园区风蚀气候侵蚀力特征[J]. 中国沙漠, 2017, 37(3):1-5.
[18] [Niu Qinghe, Qu Jianjun, An Zhishan. Characteristic of wind erosion climatic erosivity in Dunhuang Yardang Geo-park of Gansu Province[J]. Journal of Arid Land Resources and Environment, 2017, 37(3):1-5. ]
[19] Zhao H, Li G, Sheng Y, et al. Early-middle Holocene lake-desert evolution in northern Ulan Buh Desert, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 331:31-38.
[20] Folk R L, Ward W C. Brazos River bar: A study in the significance of grain size parameters[J]. Journal of Sedimentary Petrology, 1957, 27(1):3-26.
[21] Folk R L. A review of grain-size parameters[J]. Sedimentology, 1966, 6(2):73-93.
[22] Sun D, Bloemendal J, Rea D K, et al. Grain-size distribution function of polymodal sediments in hydraulic and aeolian environments, and numerical partitioning of the sedimentary components[J]. Sedimentary Geology, 2002, 152:263-277.
[23] 董李. 罗布泊雅丹地貌沉积物特征及成因分析[D]. 乌鲁木齐: 新疆师范大学, 2013.
[23] [Dong Li. The sedimentary characteristics and cause analysis of yardang in Lop Nur[D]. Urumqi: Xinjiang Normal University, 2013. ]
[24] Wang Y, Wu F, Zhang X, et al. Formation and evolution of yardangs activated by Late Pleistocene tectonic movement in Dunhuang, Gansu Province of China[J]. Journal of Earth System Science, 2016, 125(8):1603-1614.
[25] Visher G S. Grain size distributions and depositional processes[J]. Journal of Sedimentary Research, 1969, 39(3):1074-1106.
[26] Ghosh J K, Mazumder B S. Size distribution of suspended particles-unimodality, symmetry and lognormality[J]. Statistical Distributions in Scientific Work, 1981, 6:21-32.
[27] Liu B, Qu J, Ning D, et al. Grain-size study of aeolian sediments found east of Kumtagh Desert[J]. Aeolian Research, 2014, 13:1-6.
[28] Zhang X, Zhou A, Zhang C, et al. High-resolution records of climate change in arid eastern Central Asia during MIS 3 (51600-25300 cal a BP) from Wulungu Lake, north-western China[J]. Journal of Quaternary Science, 2016, 31(6):577-586.
[29] 李开封, 穆桂金, 徐立帅, 等. 塔里木河干流古河道表层沉积物粒度特征及其意义[J]. 水土保持通报, 2012, 32(1):161-164.
[29] [Li Kaifeng, Mu Guijin, Xu Lishuai, et al. Grain size characteristics and their significance for surface sediment of paleochannels along main stream of Tarim River[J]. Bulletin of Soil and Water Conservation, 2012, 32(1):161-164. ]
[30] 张志高, 张宏亮, 刘青利, 等. 河西走廊不同类型地表沉积物粒度研究[J]. 人民黄河, 2015, 37(7):95-100.
[30] [Zhang Zhigao, Zhang Hongliang, Liu Qingli, et al. Particle size analysis of surface sediments and its significance in Hexi Corridor of China[J]. Yellow River, 2015, 37(7):95-100. ]
[31] 殷志强, 秦小光, 吴金水, 等. 中国北方部分地区黄土, 沙漠沙, 湖泊, 河流细粒沉积物粒度多组分分布特征研究[J]. 沉积学报, 2009, 27(2):343-351.
[31] [Yin Zhiqiang, Qin Xiaoguang, Wu Jinshui, et al. The multimodal grain-size distribution characteristics of loess, desert, lake and river sediment in some areas of northern China[J]. Acta Sedimentologica Sinica, 2009, 27(2):343-351. ]
[32] Vandenberghe J. Grain size of fine-grained windblown sediment: A powerful proxy for process identification[J]. Earth-Science Reviews, 2013, 121:18-30.
[33] Liu X, Sun Y, Vandenberghe J, et al. Palaeoenvironmental implication of grain-size compositions of terrace deposits on the western Chinese Loess Plateau[J]. Aeolian Research, 2018, 32:202-209.
[34] 唐进年. 库姆塔格沙漠沉积物特征与沉积环境研究[D]. 北京: 中国林业科学研究院, 2018.
[34] [Tang Jinnian. Study on sediment characteristics and depositional environment in Kumtagh Desert[D]. Beijing: Chinese Academy of Forestry Sciences, 2018. ]
[35] Sun D, Su R, Bloemendal J, et al. Grain-size and accumulation rate records from Late Cenozoic aeolian sequences in northern China: Implications for variations in the east Asian winter monsoon and westerly atmospheric circulation[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 264(1-2):39-53.
[36] Li Z, Wei Z, Dong S, et al. The paleoenvironmental significance of spatial distributions of grain size in groundwater-recharged lakes: A case study in the hinterland of the Badain Jaran Desert, northwest China[J]. Earth Surface Processes and Landforms, 2018, 43(2):363-372.
[37] 贺振杰, 马龙, 吉力力·阿不都外力, 等. 哈萨克斯坦巴尔喀什湖沉积物粒度特征及其对区域环境变化的响应[J]. 干旱区地理, 2021, 44(5):1317-1327.
[37] [He Zhenjie, Ma Long, Abuduwaili Jilili, et al. Grain-size characteristics of lacustrine sediments in Balkhash Lake, Kazakhstan and its response to regional environmental changes[J]. Arid Land Geography, 2021, 44(5):1317-1327. ]
[38] Vandenberghe J. Grain size of fine-grained windblown sediment: A powerful proxy for process identification[J]. Earth-Science Reviews, 2013, 121:18-30.
文章导航

/