生物与环境

1980—2015年西北地区脊椎动物种群数量及生境变化分析

展开
  • 1. 生态保护部卫星环境应用中心,北京 100094
    2. 中国环境科学研究院,北京 100012
    3. 中国科学院动物研究所,北京 100101
    4. 辽宁科技大学,辽宁 鞍山 114051
万华伟(1981-),女,正高级工程师,博士,主要从事定量遥感应用研究. E-mail: livelyhw@163.com

收稿日期: 2021-01-13

  修回日期: 2021-08-13

  网络出版日期: 2021-12-03

基金资助

国家重点研发计划(2019YFC0507802);国家自然科学基金青年科学基金(41801366)

Changes in the number and habitat of vertebrata in northwest China from 1980 to 2015

Expand
  • 1. Center for Satellite Application on Ecology and Environment, Ministry of Ecology and Environment, Beijing 100094, China
    2. Chinese Research Academy of Environmental Sciences, Beijing 100012, China
    3. Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
    4. University of Science and Technology Liaoning, Anshan 114051, Liaoning, China

Received date: 2021-01-13

  Revised date: 2021-08-13

  Online published: 2021-12-03

摘要

西北地区地域辽阔,地理位置得天独厚,动物区系特殊而丰富,但生态系统脆弱,容易受到环境变化的影响,严重影响物种数量和生境状况。论文以卫星遥感及地面物种调查数据为主要数据源,以地球生命力指数(Living planet index,LPI)分析生物多样性水平和变化趋势,表征物种变化状况;将土地利用数据重分类为6种生态系统类型,将森林、草地、荒漠、水体和湿地生态系统定义为自然生境,聚落和农田生态系统定义为人工生境,其面积大小表征物种栖息地状况。对1980—2015年脊椎动物种群数量及生境状况变化趋势进行综合分析,结果表明:西北地区脊椎动物种群数量自1980年以来整体呈下降趋势,至2013年下降了57.83%,但2005年后呈逐渐恢复的趋势;青海湖裸鲤(Gymnocypris przewalskii)、普氏原羚(Procapra przewalskii)和朱鹮(Nipponia nippon)等物种数量分别增加55.77%,26.03%和304%,2000年之前处于下降趋势,2000年之后显著增加,但野骆驼(Camelus ferus)、四爪陆龟(Testudo horsfieldii)等物种的种群数量呈指数型下降,且下降趋势仍未缓解;草地、荒漠生态系统面积减少,森林、水体和湿地生态系统面积增加,整体上主要由自然生境转为人工生境。本文对了解研究区动物及其环境变化、生态环境保护具有重要意义,根据研究结果制定控制物种数量的措施以及对物种数量变动预测都发挥很大作用,同时也有利于西北地区生物多样性保护的研究和管理。

本文引用格式

万华伟,张志如,夏霖,刘玉平,侯鹏,孙晨曦,金岩丽 . 1980—2015年西北地区脊椎动物种群数量及生境变化分析[J]. 干旱区地理, 2021 , 44(6) : 1740 -1749 . DOI: 10.12118/j.issn.1000–6060. 2021.06. 22

Abstract

The northwestern region of China has a vast territory, a unique geographical location, and a special and rich fauna. However, its ecosystem is fragile and vulnerable to environmental changes. This region is facing the dual pressure of climate and human activities, which critically affects the number of species and habitat conditions. Therefore, this article uses satellite remote sensing and ground-based species survey data as the main data source. Living planet index is used to analyze the level and the change trend of biodiversity and characterize the change status of species. Land use data were reclassified into six ecosystem types. Forest, grassland, desert, water, and wetland ecosystems were defined as natural habitats, and settlement and farmland ecosystems were defined as artificial habitats. Their area represented the habitat status of species. A comprehensive analysis of the change trend of the vertebrate population and habitat status since 1980—2015. The results showed that the vertebrate population in northwest China had a downward trend since 1980 and decreased by 57.83% in 2013, but it gradually recovered after 2005. The number of Gymnocypris przewalskii, Procapra przewalskii, and Nipponia nippon in Qinghai Lake increased by 55.77%, 26.03%, and 304%, respectively. This number exhibited a downward trend before 2000 and increased significantly after 2000, but the population number of Camelus ferus, Testudo horsfieldii, and other species decreased exponentially, and the downward trend has not been alleviated. The area of grassland and desert ecosystem decreased, and the area of forest, water body, and wetland ecosystem increased. On the whole, it has mainly changed from natural habitat to artificial habitat. The research is of great significance to understand the animals and their environmental changes and eco-environmental protection in the study area. Such an analysis plays a major role in formulating measures to control the number of species and predicting the change of species according to the research results. It is also conducive to the research and the management of biodiversity conservation in northwest China.

参考文献

[1] 曹铭昌, 乐志芳, 雷军成, 等. 全球生物多样性评估方法及研究进展[J]. 生态与农村环境学报, 2013, 29(1):8-16.
[1] [ Cao Mingchang, Le Zhifang, Lei Juncheng, et al. Approaches to assessment of global biodiversity and advancements in their researches[J]. Journal of Ecology and Rural Environment, 2013, 29(1):8-16. ]
[2] 魏辅文, 冯祚建, 王祖望. 野生动物对生境选择的研究概况[J]. 动物学杂志, 1998, 33(4):49-53.
[2] [ Wei Fuwen, Feng Zuojian, Wang Zuwang. Research on habitat selection of wild animals[J]. Chinese Journal of Zoology, 1998, 33(4):49-53. ]
[3] 武正军, 李义明. 生境破碎化对动物种群存活的影响[J]. 生态学报, 2003, 23(11):2424-2435.
[3] [ Wu Zhengjun, Li Yiming. Effects of habitat fragmentation on survival of animal populations[J]. Acta Ecologica Sinica, 2003, 23(11):2424-2435. ]
[4] 万华伟, 夏霖, 侯鹏, 等. 近40年东北地区陆栖脊椎动物种群数量及其生境变化评估[J]. 生态学报, 2018, 38(16):5649-5658.
[4] [ Wan Huawei, Xia Lin, Hou Peng, et al. Assessment of the changes in the number of terrestrial vertebrates and habitat in northeast China over the last 40 years[J]. Acta Ecologica Sinica, 2018, 38(16):5649-5658. ]
[5] Das S, Angadi D P. Land use land cover change detection and monitoring of urban growth using remote sensing and GIS techniques: A micro-level study[J]. GeoJournal, 2021, doi: 10.1007/s10708-020-10359-1.]
[6] He G, Yang H T, Pan R L, et al. Using unmanned aerial vehicles with thermal-image acquisition cameras for animal surveys: A case study on the Sichuan snub-nosed monkey in the Qinling Mountains[J]. Integrative Zoology, 2020, 15(1):79-86.
[7] 邵全琴, 郭兴健, 李愈哲, 等. 无人机遥感的大型野生食草动物种群数量及分布规律研究[J]. 遥感学报, 2018, 22(3):497-507.
[7] [ Shao Quanqin, Guo Xingjian, Li Yuzhe, et al. Using UAV remote sensing to analyze the population and distribution of large wild herbivores[J]. Journal of Remote Sensing, 2018, 22(3):497-507. ]
[8] 郭庆华, 刘瑾. 遥感已经成为生物多样性研究保护与变化监测不可或缺的技术手段[J]. 生物多样性, 2018, 26(8):785-788.
[8] [ Guo Qinghua, Liu Jin. Remote sensing has become an indispensable technology for biodiversity research protection and change monitoring[J]. Biodiversity Science, 2018, 26(8):785-788. ]
[9] 刘全諹, 齐明亮, 马啸宙, 等. 基于遥感和 GIS的洮河流域面源污染流域尺度模拟及防治对策研究[J]. 干旱区地理, 2020, 43(3):706-714.
[9] [ Liu Quanyang, Qi Mingliang, Ma Xiaozhou, et al. SWAT simulation and countermeasures of non-point source pollution based on remote sensing and GIS in Taohe River Basin[J]. Arid Land Geography, 2020, 43(3):706-714. ]
[10] 吕晨阳, 金崑, 王秀磊. 武威东沙窝地区赛加羚羊潜在生境适宜性评价[J]. 生态科学, 2014, 33(5):931-936.
[10] [ Lü Chenyang, Jin Kun, Wang Xiulei. Potential habitat evaluation of Saiga antelope in Wuwei Dongshawo Region, Gansu[J]. Ecological Science, 2014, 33(5):931-936. ]
[11] 张桐菓. 基于GIS的扎龙湿地丹顶鹤空间格局及其生境变化研究[D]. 湘潭: 湖南科技大学, 2016.
[11] [ Zhang Tongguo. Study on changes of spatial pattern and habitat of red-crowned crane in Zhalong Wetland based on GIS[D]. Xiangtan: Hunan University of Science and Technology, 2016. ]
[12] 王秀磊, 李迪强, 吴波, 等. 青海湖东-克图地区普氏原羚生境适宜性评价[J]. 生物多样性, 2005, 13(3):213-220.
[12] [ Wang Xiulei, Li Diqiang, Wu Bo, et al. Habitat suitability assessment of Przewalski’s gazelle in the Hudong-Ketu area, Qinghai, China[J]. Biodiversity Science, 2005, 13(3):213-220. ]
[13] 张宇, 李佳, 薛亚东, 等. 气候变化背景下湖北川金丝猴种群生存力分析[J]. 生态学杂志, 2018, 37(1):3333-3341.
[13] [ Zhang Yu, Li Jia, Xue Yadong, et al. Population viability analysis of Sichuan golden snub-nosed monkey in context of climate change in Hubei Province, China[J]. Journal of Ecology, 2018, 37(1):3333-3341. ]
[14] Martin J, Chamaille J S, Nichols J D, et al. Simultaneous modeling of habitat suitability, occupancy, and relative abundance: African elephants in Zimbabwe[J]. Ecological Applications, 2010, 20(4):1173-1182.
[15] 戎战磊, 周宏, 韦伟, 等. 基于MAXENT模型的唐家河自然保护区大熊猫生境适宜性评价[J]. 兰州大学学报(自然科学版), 2017, 53(2):269-273, 278.
[15] [ Rong Zhanlei, Zhou Hong, Wei Wei, et al. Giant panda habitat suitability assessment in Tangjiahe Nature Reserve based on MAXENT model[J]. Journal of Lanzhou University (Natural Science Edition), 2017, 53(2):269-273, 278. ]
[16] Saatchi S, Buermann W, Steege H T, et al. Modeling distribution of Amazonian tree species and diversity using remote sensing measurements[J]. Remote Sensing of Environment, 2008, 112(5):2000-2017.
[17] Madonsela S, Cho M A, Ramoelo A, et al. Remote sensing of species diversity using Landsat 8 spectral variables[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 133:116-127.
[18] Lauver, Chris L. Mapping species diversity patterns in the Kansas shortgrass region by integrating remote sensing and vegetation analysis[J]. Journal of Vegetation Science, 1997, 8(3):387-394.
[19] Powers R P, Coops N C, Morgan J L, et al. A remote sensing approach to biodiversity assessment and regionalization of the Canadian boreal forest[J]. Progress in Physical Geography, 2013, 37(1):36-62.
[20] 解潍嘉, 黄侃, 李瑞平, 等. 应用高分辨率卫星数据估算阔叶红松林乔木多样性[J]. 北京林业大学学报, 2015, 37(3):20-26.
[20] [ Jie Weijia, Huang Kan, Li Ruiping, et al. Applying high-resolution satellite images to estimate tree diversity of mixed broadleaf-Korean pine forest[J]. Journal of the Beijing Forestry University, 2015, 37(3):20-26. ]
[21] 刘鲁霞. 基于多源遥感数据亚热带森林乔木物种多样性估测研究[D]. 北京: 中国林业科学研究院, 2017.
[21] [ Liu Luxia. Assessment of species diversity in the subtropical forest using multi-source high resolution remote sensing data[D]. Beijing: China Academy of Forestry Sciences, 2017. ]
[22] 程乾, 陈奕霏, 李顺达, 等. 基于高分1号卫星和地面实测数据的杭州湾河口湿地植物物种多样性研究[J]. 自然资源学报, 2016, 31(11):1938-1948.
[22] [ Cheng Qian, Chen Yifei, Li Shunda, et al. Research on plant species diversity in Estuarine Wetland of Hangzhou Bay based on the GF-1 satellite and in situ data[J]. Journal of Natural Resources, 2016, 31(11):1938-1948. ]
[23] 唐豪杰. 简析西北地区荒漠化的防治[J]. 绿色环保建材, 2017(9):238.
[23] [ Tang Haojie. A brief analysis on the prevention and control of desertification in northwest China[J]. Green Building Materials, 2017(9):238. ]
[24] 李秀花, 吴纯渊. 中国西北五省区水资源利用的协调性分析[J/OL]. 干旱区地理. [2021-09-16]. https://kns-cnki-net.webvpn.las.ac.cn/kcms/detail/65.1103.X.20210603.1628.012.html .
[24] [ Li Xiuhua, Wu Chunyuan. Analysis on the coordination of water resources utilization in the five provinces of northwest China[J/OL]. Arid Land Geography. [2021-09-16]. https://kns-cnki-net.webvpn.las.ac.cn/kcms/detail/65.1103.X.20210603.1628.012.html . ]
[25] 贾菊桃, 吴彩燕, 张建香, 等. 2001—2013年中国西北地区土地利用变化的时空格局分析[J]. 西南科技大学学报, 2018, 33(3):31-36, 42.
[25] [ Jia Jutao, Wu Caiyan, Zhang Jianxiang, et al. Temporal and spatial pattern of land use change in northwest China from 2001 to 2013[J]. Journal of Southwest University of Science and Technology, 2018, 33(3):31-36, 42. ]
[26] 张振宇, 钟瑞森, 李小玉, 等. 中国西北地区NPP变化及其对干旱的响应分析[J]. 环境科学研究, 2019, 32(3):431-439.
[26] [ Zhang Zhenyu, Zhong Ruisen, Li Xiaoyu, et al. Change of NPP and its response to drought in northwest China[J]. Research of Environmental Sciences, 2019, 32(3):431-439. ]
[27] Loh J, Green R E, Ricketts T, et al. The living planet index: Using species population time series to track trends in biodiversity[J]. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360(1454):289-295.
[28] 中国环境与发展国际合作委员会. 地球生命力报告—中国[R] 北京: 中国环境与发展国际合作委员会, 2015.
[28] [China Council for International Cooperation on Environment and Development. Life on Earth Report—China[R]. Beijing: China Council for International Cooperation on Environment and Development, 2015. ]
[29] Loh J, Collen B, McRae L, et al. Living planet index: Living planet report[R]. Switzerland: WWF, 2006.
[30] McRae L, Zockler C, Gill M, et al. Arctic species trend index 2010. Tracking trends in arctic wildlife5[R]. CAFF CBMP Report No.20, 2010.
[31] 钟明, 侍昊, 安树青, 等. 中国野生动物生境适宜性评价和生境破碎化研究[J]. 生态科学, 2016, 35(4):205-209.
[31] [ Zhong Ming, Shi Hao, An Shuqing, et al. The studies of wildlife habitat suitability assessment and habitat fragmentation in China[J]. Ecological Science, 2016, 35(4):205-209. ]
[32] Mcrae L, Deinet S, Freeman R. The Diversity-weighted living planet index: Controlling for taxonomic bias in a global biodiversity indicator[J]. The Public Library of Science ONE, 2017, 12(1):1-20.
[33] Van Strien A J, Meyling A W G, Herder J E, et al. Modest recovery of biodiversity in a western European country: The living planet index for the Netherlands[J]. Biological Conservation, 2016, 200:44-50.
[34] 刘威, 李航, 伊剑锋, 等. 基于优化的地球生命力指数分析鄱阳湖鸟类多样性变化[J]. 生态与农村环境学报, 2020, 36(11):1369-1374.
[34] [ Liu Wei, Li Hang, Yi Jianfeng, et al. Analysis of bird diversity variation in Poyang Lake based on optimized living planet index[J]. Journal of Ecology and Rural Environment, 2020, 36(11):1369-1374. ]
文章导航

/