收稿日期: 2020-08-25
修回日期: 2020-10-21
网络出版日期: 2021-09-22
基金资助
国家自然科学基金项目(41771035);甘肃高等学校科研项目(2018C-02)
Soil water characteristics analysis of floodplain in the Yellow River reach of Lanzhou based on stable isotopes tracing
Received date: 2020-08-25
Revised date: 2020-10-21
Online published: 2021-09-22
以兰州市安宁区金牛街码头附近距黄河约10 m的河漫滩为研究对象,对河漫滩土壤水的氢氧稳定同位素进行分析并结合不同水体lc-excess(Line-conditioned excess),研究了河漫滩土壤剖面不同深度土壤水氢氧稳定同位素与土壤含水量的变化特征以及降水以活塞流、优先流模式对土壤水的补给过程。研究表明:(1) 兰州当地大气降水线(Local meteoric water line,LMWL):δD=7.00 δ18O+3.81(R2=0.95,P<0.001)与全球大气降水线(Global meteoric water line,GMWL)有明显差异,受蒸发的影响斜率小于GMWL。(2) 土壤垂直剖面中浅层土壤水δD变幅较大,越往深层变幅越小并逐渐趋于稳定,且δD值随深度先减小、后增大、最后趋于稳定,而浅层土壤含水量较小,随着深度的增加逐渐增大,河水对深层(>80 cm)土壤水存在补给。(3) 4、6、10月观察到降水以活塞流模式对土壤水进行了补给,5、9月观察到降水以优先流模式对土壤水进行补给,即降水对河漫滩土壤水以2种入渗模式共同补给。明晰土壤水特征对于准确分析降水在土壤中的入渗量、深入认识其补给过程、准确评价地下水补给资源以及地下水污染分析具有重要意义。
王家鑫,张明军,张宇,苏鹏燕,姚旭阳 . 基于稳定同位素示踪的黄河兰州段河漫滩土壤水特征分析[J]. 干旱区地理, 2021 , 44(5) : 1449 -1458 . DOI: 10.12118/j.issn.1000–6060.2021.05.25
This study investigated the floodplain that is approximately 10 m away from the Yellow River near the Jinniu Street Wharf in Anning District, Lanzhou City in Gansu Province, China. The hydrogen and oxygen stable isotopes of the floodplain soil water were analyzed. Moreover, together with the line-conditioned excess of different water bodies, the variation characteristics of the soil water hydrogen and oxygen stable isotopes and the soil water content at different depths of the floodplain soil profile were studied. The process of precipitation replenishing the soil water in the piston and preferential flow modes was assessed. The results are presented herein. First, the local meteoric water line (δD=7.00δ18O+3.81, R2=0.95, P<0.001) in Lanzhou was significantly different from the global meteoric water line, and the slope was affected by evaporation. Second, the δD of the shallow soil water showed a larger variation. The deeper it was, the smaller the variation, which gradually stabilized. The δD value first decreased with depth, then increased, and finally stabilized. Meanwhile, the shallow soil water content was smaller and gradually increased with the soil depth, indicating that the river water replenished the soil water in the deep layer (>80 cm). Lastly, in April, June, and October, precipitation was observed to replenish the soil water in a plug flow mode, while in May and September, precipitation was observed to replenish the soil water in a preferential flow mode (i.e., soil water recharging in the flood plain is performed under two modes). Clarifying the soil water characteristics is greatly significant for the accurate analysis of the amount of precipitation infiltration in the soil and leads to a deep understanding of its replenishment process and an accurate evaluation of both groundwater replenishment and pollution analysis.
Key words: soil water; precipitation; piston flow; preferential flow; floodplain
[1] | Blum W E H. Functions of soil for society and the environment[J]. Reviews in Environmental Science and Bio/Technology, 2005, 4(3):75-79. |
[2] | 徐英德, 汪景宽, 高晓丹, 等. 氢氧稳定同位素技术在土壤水研究上的应用进展[J]. 水土保持学报, 2018, 32(3):1-9, 15. |
[2] | [ Xu Yingde, Wang Jingkuan, Gao Xiaodan, et al. Application of hydrogen and oxygen stable isotope techniques on soil water research: A review[J]. Journal of Soil and Water Conservation, 2018, 32(3):1-9, 15. ] |
[3] | Yang Y G, Fu B J. Soil water migration in the unsaturated zone of semiarid region in China from isotope evidence[J]. Hydrology Earth System Sciences, 2017, 21(3):1757-1767. |
[4] | 靳宇蓉, 鲁克新, 李鹏, 等. 基于稳定同位素的土壤水分运动特征[J]. 土壤学报, 2015, 52(4):792-801. |
[4] | [ Jin Yurong, Lu Kexin, Li Peng, et al. Research on soil water movement based on stable isotopes[J]. Acta Pedologica Sinica, 2015, 52(4):792-801. ] |
[5] | Gazis C, Feng X H. A stable isotope study of soil water: Evidence for mixing and preferential flow paths[J]. Geoderma, 2004, 119(1):97-111. |
[6] | 邓文平, 余新晓, 贾国栋, 等. 北京西山鹫峰地区氢氧稳定同位素特征分析[J]. 水科学进展, 2013, 24(5):642-650. |
[6] | [ Deng Wenping, Yu Xinxiao, Jia Guodong, et al. An analysis of characteristics of hydrogen and oxygen stable isotopes in Jiufeng Mountain areas of Beijing[J]. Advances in Water Science, 2013, 24(5):642-650. ] |
[7] | 程立平, 刘文兆. 黄土塬区几种典型土地利用类型的土壤水稳定同位素特征[J]. 应用生态学报, 2012, 23(3):651-658. |
[7] | [ Cheng Liping, Liu Wenzhao. Characteristics of stable isotopes in soil water under several typical land use patterns on Loess Tableland[J]. Chinese Journal of Applied Ecology, 2012, 23(3):651-658. ] |
[8] | Zimmenman U, Munnich K O, Roether W, et al. Traces determine movement of soil moisture and evapotranspiration[J]. Science, 1996, 152(3720):346-347. |
[9] | Brooks J R, Barnard H R, Coulombe R, et al. Ecohydrologic separation of water between trees and streams in a Mediterranean climate[J]. Nature Geoscience, 2010, 3(2):100-104. |
[10] | Evaristo J, Jasechko S, Mcdonnell J, et al. Global separation of plant transpiration from groundwater and streamflow[J]. Nature, 2015, 525(7567):91-94. |
[11] | Mathieu R, Bariac T. An isotopic study (2H and 18O) of water movements in clayey soils under a semiarid climate[J]. Water Resource Research, 1996, 32(4):779-789. |
[12] | 马田田, 柯浩成, 李占斌, 等. 次降雨事件下雨养区典型小流域土壤水分运移规律[J]. 水土保持学报, 2018, 32(2):80-86. |
[12] | [ Ma Tiantian, Ke Haocheng, Li Zhanbin, et al. Soil moisture migration characteristics of typical small watershed in rain feed region under individual rainfall events[J]. Journal of Soil and Water Conservation, 2018, 32(2):80-86. ] |
[13] | 田立德, 姚檀栋, 孙维贞, 等. 青藏高原中部土壤水中稳定同位素变化[J]. 土壤学报, 2002, 39(3):289-295. |
[13] | [ Tian Lide, Yao Tandong, Sun Weizhen, et al. Stable isotope in soil water in the middle of Tibetan Plateau[J]. Acta Pedologica Sinica, 2002, 39(3):289-295. ] |
[14] | Sperenger M, Tetzlaff D, Tunaley C, et al. Evaporation fractionation in a peatland drainage network affects stream water isotope composition[J]. Water Resources Research, 2017, 53(1):851-866. |
[15] | 田日昌, 陈洪松, 宋献方, 等. 湘西北红壤丘陵区土壤水运移的稳定性同位素特征[J]. 环境科学, 2009, 30(9):2747-2754. |
[15] | [ Tian Richang, Chen Hongsong, Song Xianfang, et al. Characteristics of soil water movement using stable isotopes in red soil hilly region of northwest Hunan[J]. Environmental Science, 2009, 30(9):2747-2754. ] |
[16] | 张小娟, 宋维峰, 吴锦奎, 等. 元阳梯田水源区土壤水氢氧同位素特征[J]. 环境科学, 2015, 36(6):2102-2108. |
[16] | [ Zhang Xiaojuan, Song Weifeng, Wu Jinkui, et al. Characteristics of hydrogen and oxygen isotopes of soil water in the water source area of Yuangyang terrace[J]. Environmental Science, 2015, 36(6):2102-2108. ] |
[17] | 王贺, 李占斌, 马波, 等. 黄土高原丘陵沟壑区流域不同水体氢氧同位素特征--以纸坊沟流域为例[J]. 水土保持学报, 2016, 30(4):85-90, 135. |
[17] | [ Wang He, Li Zhanbin, Ma Bo, et al. Characteristics of hydrogen and oxygen isotopes in different waters of the loess hilly and gully region[J]. Journal of Soil and Water Conservation, 2016, 30(4):85-90, 135. ] |
[18] | 吴韦, 蒋勇军, 贾亚男, 等. 典型岩溶槽谷区土壤水δD和δ18O时空分布特征--以重庆市中梁山岩溶槽谷为例[J]. 环境科学, 2018, 39(12):5418-5427. |
[18] | [ Wu Wei, Jiang Yongjun, Jia Yanan, et al. Temporal and spatial distribution of the soil water δD and δ 18O in a typical karst vally: A case study of Zhongliang Mountain, Chongqing City[J]. Environmental Science, 2018, 39(12):5418-5427. ] |
[19] | White J C. Water sources and ecophysiology of selected riparian species of the southern Appalachian Mountains[D]. Winston-Salem:Wake Forest University, 2015. |
[20] | 张鹏丽. 基于地形的兰州盆地人地关系研究[D]. 兰州: 兰州大学, 2017. |
[20] | [ Zhang Pengli. A study of the human-environment relationship in Lanzhou Basin based on topography[D]. Lanzhou: Lanzhou University, 2017. ] |
[21] | 张宇, 张明军, 王圣杰, 等. 基于稳定氧同位素确定植物水分来源不同方法的比较[J]. 生态学杂志, 2020, 39(4):1356-1368. |
[21] | [ Zhang Yu, Zhang Mingjun, Wang Shengjie, et al. Camparison of different methods for determining plant water sources based on stale oxygen isotope[J]. Chinese Journal of Ecology, 2020, 39(4):1356-1368. ] |
[22] | 刘任涛, 赵哈林, 刘继亮. 黄河兰州段典型人工林大型土壤动物群落结构及其多样性[J]. 土壤学报, 2009, 46(3):553-556. |
[22] | [ Liu Rentao, Zhao Halin, Liu Jiliang. Structure and diversity of soil macrofauna community in artificial forests along Yellow River, Lanzhou[J]. Acta Pedologica Sinica, 2009, 46(3):553-556. ] |
[23] | 苏鹏燕, 张明军, 王圣杰, 等. 基于氢氧稳定同位素的黄河兰州段河岸植物水分来源[J]. 应用生态学报, 2020, 31(6):1835-1843. |
[23] | [ Su Pengyan, Zhang Mingjun, Wang Shengjie, et al. Water sources of riparian plants based on stable hydrogen and oxygen isotopes in Lanzhou section of the Yellow River, China[J]. Chinese Journal of Applied Ecology, 2020, 31(6):1835-1843. ] |
[24] | 王长燕, 赵景波, 郁耀闯. 黄河兰州段高河漫滩洪水沉积及其气候意义[J]. 海洋地质与第四纪地质, 2008, 28(4):125-132. |
[24] | [ Wang Changyan, Zhao Jingbo, Yu Yaochuang. Flood sediment in valley flat and the climatic implications of Lanzhou section of the Yellow River[J]. Maring Geology and Quaternary Geology, 2008, 28(4):125-132. ] |
[25] | Geris J, Terzlaff D, Mcdonnell J J, et al. Spatial and temporal patterns of soil water storage and vegetation water use in humid northern catchments[J]. Science of the Total Environment, 2017, 595:486-493. |
[26] | 刘文茹, 彭新华, 沈业杰, 等. 激光同位素分析仪测定液态水的氢氧同位素及其光谱污染修正[J]. 生态学杂志, 2013, 32(5):1181-1186. |
[26] | [ Liu Wenru, Peng Xinhua, Shen Yejie, et al. Measurements of hydrogen and oxygen isotopes in liquid water by isotope ratio infrared spectroscopy (IRIS) and their spectral contamination corrections[J]. Chinese Journal of Ecology, 2013, 32(5):1181-1186. ] |
[27] | 孟宪菁, 温学发, 张心昱, 等. 有机物对红外光谱技术测定植物叶片和茎秆水δ18O和δD的影响[J]. 中国生态农业学报, 2012, 20(10):1359-1365. |
[27] | [ Meng Xianjing, Wen Xuefa, Zhang Xinyu, et al. Potential impacts organic contaminant on δ18O and δD in leaf and xylem water detected by isotope ratio infrared spectroscopy[J]. Chinese Journal Eco-Agriculture, 2012, 20(10):1359-1365. ] |
[28] | Sprenger M, Tetzlaff D, Soulsby C, et al. Soil water stable isotopes reveal evaporation dynamics at the soil-plant-atmosphere interface of the critical zone[J]. Hydrology and Earth System Sciences, 2017, 21:3839-3858. |
[29] | Hasselquist N J, Benegas L, Roupsard O, et al. Canopy cover effects on local soil water dynamics in a tropical agroforestry system: Evaporation drives soil water isotopic enrichment[J]. Hydrological Processes, 2018, 32(8):994-1004. |
[30] | 戴军杰, 章新平, 罗紫东, 等. 长沙地区樟树林土壤水稳定同位素的变化及影响因素[J]. 土壤学报, 2020, 57(6):1514-1525. |
[30] | [ Dai Junjie, Zhang Xinping, Luo Zidong, et al. Variation of stable isotopes in soil water Cinnamomum camphora woods in Changsha and its influencing factors[J]. Acta Pedologica Sinica, 2020, 57(6):1514-1525. ] |
[31] | Craig H. Isotopic variations in meteoric waters[J]. Science, 1961, 133(3465):1702-1703. |
[32] | Majoube M. Fractionnement en oxygène-18 et en deutérium entre l’eau et sa vapeur[J]. Journal de Chimie Physique, 1971, 68(10):1423-1436. |
[33] | Gat J R, Gonfiantini R. Stable isotope hydrology: Deuterium and oxygen-18 in the water cycle[J]. Technical Report Series, 1982, doi: 10.1029/EO063i045p00861. |
[34] | 陈粉丽. 基于大气降水稳定同位素的兰州市水循环研究[D]. 兰州: 西北师范大学, 2016. |
[34] | [ Chen Fenli. Water cycle research in Lanzhou City based on stable isotope in precipitation[D]. Lanzhou: Northwest Normal University, 2016. ] |
[35] | 吕斯丹, 宋贤威, 温学发. 降水与土壤水混合过程的生态水文分离现象及其研究进展[J]. 应用生态学报, 2019, 30(6):1797-1806. |
[35] | [ Lü Sidan, Song Xianwei, Wen Xuefa. Ecohydrologic separation of the mixing process between precipitation and soil water: A review[J]. Chinese Journal of Applied Ecology, 2019, 30(6):1797-1806. ] |
[36] | Lee K S, Kim J M, Lee D R, et al. Analysis of water movement through an unsaturated soil zone in Jeju Island, Korea using stable oxygen and hydrogen isotopes[J]. Journal of Hydrology, 2007, 345(3-4):199-211. |
[37] | 齐登红, 靳孟贵, 刘延锋. 降水入渗补给过程中优先流的确定[J]. 地球科学(中国地质大学学报), 2007, 32(3):420-424. |
[37] | [ Qi Denghong, Jin Menggui, Liu Yanfeng. Determination of preferential flow in precipitation infiltration recharge[J]. Earth Science (Journal of China University of Geosciences), 2007, 32(3):420-424. ] |
/
〈 | 〉 |