收稿日期: 2021-01-05
修回日期: 2021-08-23
网络出版日期: 2021-09-22
基金资助
国家社会科学基金资助项目(15XMZ090);国家重点研发计划项目课题(2019YFC0507401)
Changes of extreme precipitation in Qilian Mountains in recent 60 years
Received date: 2021-01-05
Revised date: 2021-08-23
Online published: 2021-09-22
利用祁连山24个气象台站1961-2017年逐日降水资料,选用12个极端降水指数,采用线性趋势法、Pearson相关性分析法等,分析了祁连山极端降水指数的时空变化特征,并分析了海拔、大气环流指数对祁连山极端降水指数时空变化的影响机制。结果表明:(1) 祁连山、河西内陆河流域、柴达木内陆河流域、黄河流域(外流)连续干旱日数(CDD)呈显著减少趋势,连续湿润日数(CWD)呈增加趋势,空间分布表现出东西差异;其他极端降水指数总体呈增加趋势,空间分布呈现出祁连山中部增加幅度较大,向外围呈环状递减的趋势。(2) 降水总量增加的主要原因在于雨日天数显著增加,中雨日数的天数也显著增大,这种降水分配模式将增大极端降水事件发生的概率,进一步证实祁连山降水活动增强,极端降水频度更高,持续时间更短,降水向降雨日数更多、时间更集中的方向发展。极端降水空间分异表现在极端降水强度的降低幅度随海拔的升高而减少,高海拔区降水量和降水日数增加更为明显,CDD的减少主要发生在高海拔区。(3) 在所选的11个大气环流异常因子中,祁连山极端降水受北大西洋年代际振荡(AMO)指数影响最大,北极涛动(AO)指数与祁连山极端降水的关系最为复杂,大西洋海平面表面温度指数越大、南海夏季风(SCSSMI)指数、南美夏季风(SAMSMI)指数越低则流域发生多雨、洪涝现象的概率越大,反之发生少雨现象的概率越大。
温煜华,吕越敏,李宗省 . 近60a祁连山极端降水变化研究[J]. 干旱区地理, 2021 , 44(5) : 1199 -1212 . DOI: 10.12118/j.issn.1000–6060.2021.05.01
Using daily precipitation data from 24 meteorological stations in the Qilian Mountains of China from 1961 to 2017, 12 extreme precipitation indices were selected. The linear trend method, Pearson correlation technique, etc. were employed to analyze the temporal and spatial properties of extreme precipitation indices in the Qilian Mountains, and the impact mechanism of altitude with general circulation index on the temporal and spatial variation of extreme precipitation index was evaluated in the Qilian Mountains. (1) The results show that the continuous dry days of the Qilian Mountains, the Hexi inland river basin, the Qaidam inland river basin, and the Yellow River Basin (outflow) exhibited a significant decreasing trend, whereas the continuous wet days exhibited an increasing trend, and the spatial distribution indicated east-west differences. Other extreme precipitation indices exhibited an overall rising trend. The spatial distribution is central in the Qilian Mountains as the area with a larger increase range, and it decreases toward the outer ring. (2) The major reason for the rise in total precipitation is that the number of rainy and moderately rainy days has considerably increased. This precipitation distribution model will increase the probability of intense precipitation events, further confirming that the Qilian Mountains have increased precipitation activities, with a higher frequency and shorter duration of extreme precipitation, as well as the development trend of precipitation in the course of more rainfall days and more concentrated time. The drop in extreme precipitation intensity decreases with the increase in altitude, indicating that extreme precipitation is spatially differentiated. In high-altitude areas, the increase in precipitation and precipitation day is more evident and the decrease in the number of consecutive dry days mainly occurs in high-altitude areas. (3) Among the 11 selected atmospheric circulation anomalies, extreme precipitation in the Qilian Mountains is mainly affected by the AMO index, and the association between AO index and intense precipitation in the Qilian Mountains is the most complicated. The higher the Atlantic sea-level surface temperature index, the lower are the SCSSMI and SAMSMI indices, and the greater is the probability of excess rain and flooding; on the contrary, the probability of less rain is higher.
Key words: Qilian Mountains; climate change; extreme precipitation indices
[1] | IPCC. Summary for policymakers[C]// Stocker T F, Qin D, Plattner G K, et al. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013. |
[2] | Changnon S A, Pielke R A, Changnon D, et al. Human factors explain the increased losses from weather and climate extremes[J]. Bulletin of the American Meteorological Society, 2000(81):437-442. |
[3] | Omondi P A, Awange J L, Forootan E, et al. Changes in temperature and precipitation extremes over the Greater Horn of Africa region from 1961 to 2010[J]. International Journal of Climatology, 2014, 34(4):1262-1277. |
[4] | 陈洪滨, 范学花. 2011年极端天气和气候事件及其他相关事件的概要回顾[J]. 气候与环境研究, 2012, 17(3):365-380. |
[4] | [ Chen Hongbin, Fan Xuehua. Some extreme events of weather, climate, and related phenomena in 2011[J]. Climatic and Environmental Research, 2012, 17(3):365-380. ] |
[5] | 陈海山, 范苏丹, 张新华. 中国近50 a极端降水事件变化特征的季节性差异[J]. 大气科学学报, 2009, 32(6):744-751. |
[5] | [ Chen Haishan, Fan Sudan, Zhang Xinhua. Seasons differences of variation characteristics of extreme precipitation events over China in the last 50 years[J]. Transactions of Atmospheric Sciences, 2009, 32(6):744-751. ] |
[6] | 杨金虎, 江志红, 王鹏祥, 等. 中国年极端降水事件的时空分布特征[J]. 气候与环境研究, 2008, 13(1):75-83. |
[6] | [ Yang Jinhu, Jiang Zhihong, Wang Pengxiang, et al. Temporal and spatial characteristic of extreme precipitation event in China[J]. Climatic and Environmental Research, 2008, 13(1):75-83. ] |
[7] | Choi G, Collins D, Ren G, et al. Changes in means and extreme events of temperature and precipitation in the Asia-Pacific network region, 1955-2007[J]. International Journal of Climatology, 2009, 29(13):1906-1925. |
[8] | Caesar J, Alexander L V, Trewin B, et al. Changes in temperature and precipitation extremes over the Indo-Pacific region from 1971 to 2005[J]. International Journal of Climatology, 2011, 31(6):791-801. |
[9] | Kunkel K E, Easterling D R, Redmond K, et al. Temporal variations of extreme precipitation events in the United States: 1895-2000[J]. Geophysical Research Letters, 2003, 30(17):1895-2000. |
[10] | Aguilar E, Barry A A, Brunet M, et al. Changes in temperature and precipitation extremes in western central Africa, Guinea Conakry, and Zimbabwe, 1955-2006[J]. Journal of Geophysical Research Atmospheres, 2009, 114(D2):356-360. |
[11] | You Q L, Kang S C, Aguila E, et al. Changes in daily climate extremes in China and their connection to the large scale atmospheric circulation during 1961-2003[J]. Climate Dynamics, 2011, 36:2399-2417. |
[12] | Zhai P M, Zhang X B, Wan H, et al. Trends in total precipitation and frequency of daily precipitation extremes over China[J]. Journal of Climate, 2005, 18(7):1096-1108. |
[13] | 任正果, 张明军, 王圣杰, 等. 1961-2011年中国南方地区极端降水事件变化[J]. 地理学报, 2014, 69(5):640-649. |
[13] | [ Ren Zhengguo, Zhang Mingjun, Wang Shengjie, et al. Changes in precipitation extremes in south China during 1961-2011[J]. Acta Geographica Sinica, 2014, 69(5):640-649. ] |
[14] | 蔡敏, 丁裕国, 江志红. 我国东部极端降水时空分布及其概率特征[J]. 高原气象, 2007, 26(2):309-318. |
[14] | [ Cai Min, Ding Yuguo, Jiang Zhihong. Extreme precipitation experimentation over eastern China based on L-moment estimation[J]. Plateau Meteorology, 2007, 26(2):309-318. ] |
[15] | 丁之勇, 葛拥晓, 吉力力·阿不都外力, 等. 1957-2012年新疆艾比湖流域极端气温与降水变化趋势[J]. 中国科学院大学学报, 2018, 35(2):160-171. |
[15] | [ Ding Zhiyong, Ge Yongxiao, Abuduwaili Jilili, et al. Trends of extreme temperature and precipitation in Ebinur Lake Basin in Xinjiang during the period from 1957 to 2012[J]. Journal of University of Chinese Academy of Sciences, 2018, 35(2):160-171. ] |
[16] | 高妍, 冯起, 李宗省, 等. 祁连山讨赖河流域1957-2012年极端气候变化[J]. 中国沙漠, 2014, 34(3):814-826. |
[16] | [ Gao Yan, Feng Qi, Li Zongxing, et al. The variation of climate extremes in the Taolaihe River Basin in the Qilian Mountains of China during 1957-2012[J]. Journal of Desert Research, 2014, 34(3):814-826. ] |
[17] | 刘江涛, 徐宗学, 赵焕, 等. 1973-2016年雅鲁藏布江流域极端降水事件时空变化特征[J]. 山地学报, 2018, 36(5):750-764. |
[17] | [ Liu Jiangtao, Xu Zongxue, Zhao Huan, et al. Spatiotemporal variation of extreme precipitation events in the Yarlung Zangbo River Basin from 1973 to 2016, China[J]. Mountain Research, 2018, 36(5):750-764. ] |
[18] | 王莉萍, 王维国, 张建忠. 我国主要流域降水过程时空分布特征分析[J]. 自然灾害学报, 2018, 27(2):161-173. |
[18] | [ Wang Liping, Wang Weiguo, Zhang Jianzhong. Analysis on spatial and temporal distribution characteristics of precipitation processes over main river basin in China[J]. Journal of Natural Disasters, 2018, 27(2):161-173. ] |
[19] | 闫慧敏, 陈伟娜, 杨方兴, 等. 过去50年内蒙古极端气候事件时空格局特征[J]. 地理研究, 2014, 33(1):13-22. |
[19] | [ Yan Huimin, Chen Weina, Yang Fangxing, et al. The spatial and temporal analysis of extreme climatic events in Inner Mongolia during the past 50 years[J]. Geographical Research, 2014, 33(1):13-22. ] |
[20] | 慈晖, 张强, 张江辉, 等. 1961-2010年新疆极端降水过程时空特征[J]. 地理研究, 2014, 33(10):1881-1891. |
[20] | [ Ci Hui, Zhang Qiang, Zhang Jianghui, et al. Spatiotemporal variations of extreme precipitation events within Xinjiang during 1961-2010[J]. Geographical Research, 2014, 33(10):1881-1891. ] |
[21] | 尹泽生, 徐叔鹰. 祁连山区域地貌与制图研究[M]. 北京: 科学出版社, 1992: 97-106. |
[21] | [ Yin Zesheng, Xu Shuying. Study on regional geomorphology and mapping in Qilian Mountains[M]. Beijing: Science Press, 1992: 97-106. ] |
[22] | 王宗太. 中国冰川目录(I): 祁连山区[M]. 兰州: 中国科学院兰州冰川冻土研究所, 1981: 58-61. |
[22] | [ Wang Zongtai. Chinese glacier catalogue (I): Qilian Mountains Region[M]. Lanzhou: Lanzhou Institute of Glaciology and Cryopedology, Chinese Academy of Sciences, 1981: 58-61. ] |
[23] | 贾文雄, 张禹舜, 李宗省. 近50年来祁连山及河西走廊地区极端降水的时空变化研究[J]. 地理科学, 2014, 34(8):1002-1009. |
[23] | [ Jia Wenxiong, Zhang Yushun, Li Zongxing. Spatial and temporal change of precipitation extremes in Qilian Mountains and Hexi Corridor in recent fifty years[J]. Scientia Geographica Sinica, 2014, 34(8):1002-1009. ] |
[24] | 付建新, 曹广超, 李玲琴, 等. 1960-2014年祁连山南坡及其附近地区降水时空变化特征[J]. 水土保持研究, 2018, 25(4):152-161. |
[24] | [ Fu Jianxin, Cao Guangchao, Li Lingqin, et al. Analysis of temporal and spatial variation characteristics of precipitation in the south slope of Qilian Mountains and its nearby regions during 1960-2014[J]. Research of Soil and Water Conservation, 2018, 25(4):152-161. ] |
[25] | 汪宝龙, 张明军, 魏军林, 等. 1960-2009年青海省极端降水事件的变化特征[J]. 水土保持通报, 2012, 32(4):92-96, 317. |
[25] | [ Wang Baolong, Zhang Mingjun, Wei Junlin, et al. Changes of extreme precipitation events in Qinghai Province during 1960-2009[J]. Bulletin of Soil and Water Conservation, 2012, 32(4):92-96, 317. ] |
[26] | 王婷婷, 冯起, 李宗省, 等. 1960-2012年祁连山东段古浪河流域极端气候事件研究[J]. 冰川冻土, 2018, 40(3):598-606. |
[26] | [ Wang Tingting, Feng Qi, Li Zongxing, et al. Extreme climate research on Gulang River Basin in eastern Qilian Mountains during 1960-2012[J]. Journal of Glaciology and Geocryology, 2018, 40(3):598-606. ] |
[27] | Peterson T C, Folland C, Gruza G, et al. Report on the activities of the Working Group on Climate Change Detection and Related Rapporteurs 1998-2001, Rep. WCDMP-47, WMO-TD 1071[M]. Geneva: World Meteorological Organization, 2001. |
[28] | 魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 1999: 17-31. |
[28] | [ Wei Fengying. Modern climatic statistical diagnosis and forecasting technology[M]. Beijing: China Meteorological Press, 1999: 17-31. ] |
[29] | 于秀林, 任雪松. 多元统计分析[M]. 北京: 中国统计出版社, 1999: 75-90. |
[29] | [ Yu Xiulin, Ren Xuesong. Multivariate statistical analysis[M]. Beijing: China Statistics Press, 1999: 75-90. ] |
[30] | Folland C K, Palmer T N, Parker D E. Sahel rainfall and worldwide sea temperatures, 1901-85[J]. Nature, 1986, 320(6063):602-607. |
[31] | Delworth T L, Mann M E. Observed and simulated multidecadal variability in the Northern Hemisphere[J]. Climate Dynamics, 2000, 16(9):661-676. |
[32] | 李双林, 王彦明, 郜永祺. 北大西洋年代际振荡(AMO)气候影响的研究评述[J]. 大气科学学报, 2009, 32(3):458-465. |
[32] | [ Li Shuanglin, Wang Yanming, Gao Yongqi. A review of the researches on the Atlantic Multidecadal Oscillation (AMO) and its climate influence[J]. Transactions of Atmospheric Sciences, 2009, 32(3):458-465. ] |
[33] | 陈发虎, 陈建徽, 黄伟. 中纬度亚洲现代间冰期气候变化的“西风模式”讨论[J]. 地学前缘, 2009, 16(6):23-32. |
[33] | [ Chen Fahu, Chen Jianhui, Huang Wei. A discussion on the westerly-dominated climate model in mid-latitude Asia during the modern interglacial period[J]. Earth Science Frontiers, 2009, 16(6):23-32. ] |
[34] | Alexander M A, Bladé I, Newman M, et al. The atmospheric bridge: The influence of ENSO teleconnections on air-sea interaction over the global oceans[J]. Journal of Climate, 2002, 15(16):2205-2231. |
[35] | Wang B, Liu J, Yang J, et al. Distinct principal modes of early and late summer rainfall anomalies in East Asia[J]. Journal of Climate, 2009, 22(13):3864-3875. |
[36] | 张国斌. 近54年祁连山地区干旱时空变化及成因分析[D]. 兰州: 西北师范大学, 2016. |
[36] | [ Zhang Guobin. Spatial-temporal variation and factors of drought in Qilian Mountain area in recent 54 years[D]. Lanzhou: Northwest Normal University, 2006. ] |
[37] | Hurrell J W. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation[J]. Science, 1995, 269(5224):676-679. |
[38] | Thompson D W J, Wallace J M. The Arctic oscillation signature in the wintertime geopotential height and temperature fields[J]. Geophysical Research Letters, 1998, 25(9):1297-1300. |
[39] | Alexander L V, Zhang X, Peterson T C, et al. Global observed changes in daily climate extremes of temperature and precipitation[J]. Journal of Geophysical Research Atmospheres, 2006, 111(D5):1042-1063. |
[40] | Wang X L, Hou X Y, Wang Y D, et al. Spatiotemporal variations and regional differences of extreme precipitation events in the coastal area of China from 1961 to 2014[J]. Atmospheric Research, 2017, 197:94-104. |
[41] | Madsen H, Lawrence D, Lang M, et al. Review of trend analysis and climate change projections of extreme precipitation and floods in Europe[J]. Journal of Hydrology, 2014, 519:3634-3650. |
[42] | 翟盘茂, 潘晓华. 中国北方近50年温度和降水极端事件变化[J]. 地理学报, 2003, 58(增刊1):1-10. |
[42] | [ Zhai Panmao, Pan Xiaohua. Change in extreme temperature and precipitation over northern China during the second half of the 20th century[J]. Acta Geographica Sinica, 2003, 58(Suppl. 1):1-10. ] |
[43] | 翟盘茂, 王萃萃, 李威. 极端降水事件变化的观测研究[J]. 气候变化研究进展, 2007, 3(3):144-148. |
[43] | [ Zhai Panmao, Wang Cuicui, Li Wei. A review on study of change in precipitation extremes[J]. Climate Change Research, 2007, 3(3):144-148. ] |
[44] | 李培都, 司建华, 冯起, 等. 1958-2015年敦煌及周边地区极端降水事件的时空变化特征[J]. 高原气象, 2018, 37(2):535-544. |
[44] | [ Li Peidu, Si Jianhua, Feng Qi, et al. Temporal and spatial variation of extreme precipitation events in Dunhuang and surrounding areas from 1958 to 2015[J]. Plateau Meteorology, 2018, 37(2):535-544. ] |
[45] | 宋连春, 张存杰. 20世纪西北地区降水量变化特征[J]. 冰川冻土, 2003, 25(2):143-148. |
[45] | [ Song Lianchun, Zhang Cunjie. Changing features of precipitation over northwest China during the 20th century[J]. Journal of Glaciology and Geocryology, 2003, 25(2):143-148. ] |
[46] | 马学谦, 孙安平. 祁连山区降水的大气特征分析[J]. 高原气象, 2011, 30(5):1392-1398. |
[46] | [ Ma Xueqian, Sun Anping. Analysis on atmospheric characteristic of precipitation in Qilian Mountain[J]. Plateau Meteorology, 2011, 30(5):1392-1398. ] |
[47] | 张良, 张强, 冯建英, 等. 祁连山地区大气水循环研究(I): 空中水汽输送年际变化分析[J]. 冰川冻土, 2014, 36(5):1079-1091. |
[47] | [ Zhang Liang, Zhang Qiang, Feng Jianying, et al. A study of atmospheric water cycle over the Qilian Mountains (I): Variation of annual water vapor transport[J]. Journal of Glaciology and Geocryology, 2014, 36(5):1079-1091. ] |
[48] | 张强, 张杰, 孙国武, 等. 祁连山山区空中水汽分布特征研究[J]. 气象学报, 2007, 65(4):633-643. |
[48] | [ Zhang Qiang, Zhang Jie, Sun Guowu, et al. Research on atmospheric water-vapor distribution over Qilian Mountains[J]. Acta Meteorologica Sinica, 2007, 65(4):633-643. ] |
[49] | 张强, 俞亚勋, 张杰. 祁连山与河西内陆河流域绿洲的大气水循环特征研究[J]. 冰川冻土, 2008, 30(6):907-913. |
[49] | [ Zhang Qiang, Yu Yaxun, Zhang Jie. Characteristics of water cycle in the Qilian Mountains and the oases in Hexi inland river basins[J]. Journal of Glaciology and Geocryology, 2008, 30(6):907-913. ] |
[50] | 施雅风, 沈永平, 李栋梁, 等. 中国西北气候由暖干向暖湿转型的特征和趋势探讨[J]. 第四纪研究, 2003, 23(2):152-164. |
[50] | [ Shi Yafeng, Shen Yongping, Li Dongliang, et al. Discussion on the present climate change from warm-dry to warm-wet in northwest China[J]. Quaternary Sciences, 2003, 23(2):152-164. ] |
/
〈 |
|
〉 |