收稿日期: 2020-04-07
修回日期: 2021-05-05
网络出版日期: 2021-08-02
基金资助
新疆人工影响天气科学技术研究开放基金项目(RYJ201708);克拉玛依市科技计划项目(SK2016-45)
Regression analysis of the rainfall enhancement effect by rocket seeding at summer and autumn in Karamay
Received date: 2020-04-07
Revised date: 2021-05-05
Online published: 2021-08-02
利用1990—2017年克拉玛依市克拉玛依区气象站、百口泉气象站及1994—2017年石化场气象站6—9月月降水资料,采用统计学的区域回归分析法,将百口泉气象站作为对比站点,克拉玛依区气象站和石化场气象站作为目标站点,对克拉玛依在2015—2017年夏秋季开展的地面火箭人工增水作业效果进行统计分析。结果表明:(1) 距作业点约9 km的石化场气象站作业效果好于距作业点约4 km的克拉玛依区气象站,说明作业效果较好的区域应位于距作业点适当的距离处;(2) 2016年7月和2015年7月各作业了13次和9次,作业次数多的相对作业效果好些,作业效果与月作业次数成正相关;(3) 每次作业火箭弹数量5—7枚相对作业效果好些。因此,地面增水作业效果好的位置应位于作业点下风方一定的距离处。每次人工增水作业的火箭弹用量应适当,作业量太大会造成减少降水,作业量太少可能又达不到催化效果。通过对克拉玛依市近年来开展的夏秋季地面火箭人工增水作业效果进行分析讨论,初步得出了地面火箭人工增水作业效果与作业方法之间的关系,为更好地科学设计实施地面火箭人工增水作业提供了参考依据。
李斌,郑博华,兰文杰,杨琳,窦春苓 . 克拉玛依夏秋季地面火箭增水作业效果的区域回归分析[J]. 干旱区地理, 2021 , 44(4) : 953 -961 . DOI: 10.12118/j.issn.1000–6060.2021.04.08
Via an analysis of the effect of rainfall enhancement by rocket seeding during summer and autumn in Karamay City, Xinjiang, China in recent years, this paper provides distribution characteristics of the distance between the operation effect and the operation point and a relationship between the operation effect and the rocket projectile quantity, so as to provide a scientific basis for better artificial rainfall operation on the ground in the future. Using precipitation data from the Karamay and Baikouquan Weather Stations from June to September in the period of 1990—2017 and from the Shihuachang Weather Station from June to September in the period of 1994—2017, the effect of rainfall enhancement by rocket seeding during summer and autumn in Karamay in the period of 2015—2017 was analyzed using a regression analysis method with the Baikouquan Weather Station as the comparison site and the Karamay and Shihuachang Weather Stations as the target sites. The effect at the Shihuachang Weather Station, approximately 9 km from the operation site, was better than that at the Karamay Weather Station, approximately 4 km from the operation site. This indicates that the rainfall enhancement effect is smaller at areas too close or too far from the operation point. More operation times in one month improves the rainfall enhancement effect, with 5-7 rocket projectiles per operation improving the rainfall enhancement effect. Therefore, good effects of rainfall enhancement by rocket seeding are likely located a certain distance downwind of the operation point and the number of rocket projectiles per operation needs to be appropriate: too many projectiles may cause rain reduction, while too few may degrade the catalytic effect. The operation of rainfall enhancement on the ground, especially the operation of rainfall enhancement for convective clouds on the ground, needs to be combined with weather radar echo data to determine the operation object index to implement rainfall enhancement more scientifically and reasonably. Even though this paper analyzes the effect of rainfall enhancement by rocket seeding during summer and autumn, there is a limited number of samples and these effects need to be further analyzed and studied in the future. In particular, it is necessary to include weather radar echo data to conduct further research and analyses to obtain the macro and micro physical changes of clouds and precipitation before and after the operation of rainfall enhancement on the ground and to conduct physical or statistical assessments of the operation effect to further enhance the credibility of assessments of this effect.
Key words: rainfall enhancement; regional regression; effect analysis; Karamay
[1] | 郑国光, 陈跃, 王鹏飞, 等. 人工影响天气研究中的关键问题[M]. 北京: 气象出版社, 2005: 7-13. |
[1] | [ Zheng Guoguang, Chen Yue, Wang Pengfei, et al. Critical issues in weather modification research[M]. Beijing: Meteorological Press, 2005: 7-13. ] |
[2] | 邵洋, 刘伟, 孟旭, 等. 人工影响天气作业装备研发和应用进展[J]. 干旱气象, 2014, 32(4):649-658. |
[2] | [ Shao Yang, Liu Wei, Meng Xu, et al. Development and application advances of cloud seeding instruments[J]. Journal of Arid Meteorology, 2014, 32(4):649-658. ] |
[3] | 高子毅, 张建新, 廖飞佳, 等. 新疆天山山区人工增雨试验效果评价[J]. 高原气象, 2005, 24(5):734-740. |
[3] | [ Gao Ziyi, Zhang Jianxin, Liao Feijia, et al. The effect evaluation for precipitation enhancement experiment in Tianshan Mountains of Xinjiang[J]. Plateau Meteorology, 2005, 24(5):734-740. ] |
[4] | 李泽椿, 周毓荃, 李庆祥, 等. 人工增雨是缓和干旱半干旱地区水资源匮乏的一个补充条件[J]. 新疆气象, 2006, 29(1):1-11. |
[4] | [ Li Zechun, Zhou Yuquan, Li Qingxiang, et al. An additional way for alleviating water resources shortage in arid and semi-arid region: Precipitation stimulation[J]. Xinjiang Meteorology, 2006, 29(1):1-11. ] |
[5] | 罗光明, 侍克斌, 张宏俊. 新疆水资源利用和经济增长之间的关系[J]. 干旱区地理, 2009, 32(4):566-570. |
[5] | [ Luo Guangming, Shi Kebin, Zhang Hongjun. Relationship between water resource utilization and economic growth of Xinjiang[J]. Arid Land Geography, 2009, 32(4):566-570. ] |
[6] | 任晓, 穆桂金, 徐立帅, 等. 塔里木盆地南缘2000—2013年人工绿洲扩张特点[J]. 干旱区地理, 2015, 38(5):1022-1030. |
[6] | [ Ren Xiao, Mu Guijin, Xu Lishuai, et al. Characteristics of artificial oasis expansion in south Tarim Basin from 2000 to 2013[J]. Arid Land Geography, 2015, 38(5):1022-1030. ] |
[7] | 李大山, 章澄昌, 许焕斌, 等. 人工影响天气现状与展望[M]. 北京: 气象出版社, 2002: 30, 325. |
[7] | [ Li Dashan, Zhang Chengchang, Xu Huanbin, et al. Weather modification current situation and prospect[M]. Beijing: Meteorological Press, 2002: 30, 325. ] |
[8] | 邓铭江, 李湘权, 龙爱华, 等. 支撑新疆经济社会跨越式发展的水资源供需结构调控分析[J]. 干旱区地理, 2011, 34(3):379-390. |
[8] | [ Deng Mingjiang, Li Xiangquan, Long Aihua, et al. Regulation of supply and demand structure of the water resources and support economic and social leap-forward development of protection measures[J]. Arid Land Geography, 2011, 34(3):379-390. ] |
[9] | 苏宏超, 沈永平, 韩萍, 等. 新疆降水特征及其对水资源和生态环境的影响[J]. 冰川冻土, 2007, 29(3):343-350. |
[9] | [ Su Hongchao, Shen Yongping, Han Ping, et al. Precipitation and its impact on water resources and ecological environment in Xinjiang region[J]. Journal of Glaciology and Geocryology, 2007, 29(3):343-350. ] |
[10] | 王光焰, 王远见, 桂东伟. 塔里木河流域水资源研究进展[J]. 干旱区地理, 2018, 41(6):1151-1159. |
[10] | [ Wang Guangyan, Wang Yuanjian, Gui Dongwei. A review on water resources research in Tarim River Basin[J]. Arid Land Geography, 2018, 41(6):1151-1159. ] |
[11] | 刘金平, 包安明, 李均力, 等. 2001—2013年中亚干旱区季节性积雪监测及时空变异分析[J]. 干旱区地理, 2016, 39(2):405-412. |
[11] | [ Liu Jinping, Bao Anming, Li Junli, et al. Spatial and temporal characteristics of snow cover in arid area of Central Asia from 2001 to 2013[J]. Arid Land Geography, 2016, 39(2):405-412. ] |
[12] | 巩宁刚, 孙美平, 闫露霞, 等. 1979—2016年祁连山地区大气水汽含量时空特征及其与降水的关系[J]. 干旱区地理, 2017, 40(4):762-771. |
[12] | [ Gong Ninggang, Sun Meiping, Yan Luxia, et al. Temporal and spatial characteristics of atmospheric water vapour and its relationship with precipitation in Qilian Mountains during 1979—2016[J]. Arid Land Geography, 2017, 40(4):762-771. ] |
[13] | 陈勇航, 黄建平, 陈长和, 等. 西北地区空中云水资源的时空分布特征[J]. 高原气象, 2005, 24(6):905-912. |
[13] | [ Chen Yonghang, Huang Jianping, Chen Changhe, et al. Temporal and spatial distributions of cloud water resources over north western China[J]. Plateau Meteorology, 2005, 24(6):905-912. ] |
[14] | 陈亚宁, 王怀军, 王志成, 等. 西北干旱区极端气候水文事件特征分析[J]. 干旱区地理, 2017, 40(1):1-9. |
[14] | [ Chen Yaning, Wang Huaijun, Wang Zhicheng, et al. Characteristics of extreme climatic/hydrological events in the arid region of north western China[J]. Arid Land Geography, 2017, 40(1):1-9. ] |
[15] | 常倬林, 崔洋, 张武, 等. 基于CERES的宁夏空中云水资源特征及其增雨潜力研究[J]. 干旱区地理, 2015, 38(6):1112-1120. |
[15] | [ Chang Zhuolin, Cui Yang, Zhang Wu, et al. Characteristics and developing potential of cloud water resource in Ningxia with the CERES data[J]. Arid Land Geography, 2015, 38(6):1112-1120. ] |
[16] | 高子毅, 买买提·阿尤甫, 刘广忠, 等. 克拉玛依山区人工增水效果的再评价[J]. 新疆气象, 2000, 23(1):23-26. |
[16] | [ Gao Ziyi, Ayuf Maimat, Liu Guangzhong, et al. New evaluation of effect of orographic cloud seeding in Karamay[J]. Xinjiang Meteorology, 2000, 23(1):23-26. ] |
[17] | 王旭, 张嘉伟, 马禹, 等. 天山山脉强降水云宏微观物理属性的空间分布特征[J]. 干旱区地理, 2016, 39(6):1154-1161. |
[17] | [ Wang Xu, Zhang Jiawei, Ma Yu, et al. Spatial distribution of macro and micro physical properties of clouds during heavy rains over Tianshan Mountains[J]. Arid Land Geography, 2016, 39(6):1154-1161. ] |
[18] | 陈春艳, 赵克明, 阿不力米提江·阿布力克木, 等. 暖湿背景下新疆逐时降水变化特征研究[J]. 干旱区地理, 2015, 38(4):692-702. |
[18] | [ Chen Chunyan, Zhao Keming, Ablikim Ablimitijan, et al. Temporal and spatial distributions of hourly rain intensity under the warm background in Xinjiang[J]. Arid Land Geography, 2015, 38(4):692-702. ] |
[19] | 谢友文, 张慧琴, 朱浩, 等. 吐鲁番盆地人工增水作业区域与作业时机选择[J]. 干旱区地理, 2017, 40(5):958-966. |
[19] | [ Xie Youwen, Zhang Huiqin, Zhu Hao, et al. Artificial anstau area and operation opportunity selection in Turpan Basin[J]. Arid Land Geography, 2017, 40(5):958-966. ] |
[20] | 章澄昌. 人工影响天气概论[M]. 北京: 气象出版社, 1992: 252-253. |
[20] | [ Zhang Chengchang. Weather modification generality[M]. Beijing: Meteorological Press, 1992: 252-253. ] |
[21] | 曾光平, 方仕珍, 肖锋. 1975—1986年古田水库人工降雨效果总分析[J]. 大气科学, 1991, 15(4):97-108. |
[21] | [ Zeng Guangping, Fang Shizhen, Xiao Feng. The total analysis of the effect of artificial rainfall in Gutian Reservoir Area, Fujian (1975—1986)[J]. Chinese Journal of Atmospheric Sciences, 1991, 15(4):97-108. ] |
[22] | 钱莉, 俞亚勋, 杨永龙. 河西走廊东部人工增雨试验效果评估[J]. 干旱区研究, 2007, 24(5):679-685. |
[22] | [ Qian Li, Yu Yaxun, Yang Yonglong. Assessment on artificial rainfall experiment in the east Hexi Corridor[J]. Arid Zone Research, 2007, 24(5):679-685. ] |
[23] | 钱莉, 王文, 张峰, 等. 河西走廊东部冬春季人工增雪试验效果评估[J]. 干旱区研究, 2006, 23(2):349-354. |
[23] | [ Qian Li, Wang Wen, Zhang Feng, et al. Assessment on the artificial snowfall experiment in the east Hexi Corridor in winter and spring[J]. Arid Zone Research, 2006, 23(2):349-354. ] |
[24] | 李健丽, 余晔, 赵素平. 新疆阿勒泰地区人工增水效果评估[J]. 冰川冻土, 2018, 40(2):388-394. |
[24] | [ Li Jianli, Yu Ye, Zhao Suping. Effect evaluation of artificial precipitation in Altay Prefecture, Xinjiang[J]. Journal of Glaciology and Geocryology, 2018, 40(2):388-394. ] |
[25] | 李斌, 郑博华, 兰文杰, 等. 克拉玛依市冬季飞机人工增雪作业效果统计分析[J]. 干旱区地理, 2018, 41(4):10-16. |
[25] | [ Li Bin, Zheng Bohua, Lan Wenjie, et al. Statistical analysis of effect of aircraft artificial snowfall enhancement in winter in Karamay[J]. Arid Land Geography, 2018, 41(4):10-16. ] |
[26] | 陈光学, 段英, 吴兑, 等. 火箭人工影响天气技术[M]. 北京: 气象出版社, 2008: 139, 158-161, 193, 198-199, 317-318. |
[26] | [ Chen Guangxue, Duan Ying, Wu Dui, et al. Rocket weather modification technology[M]. Beijing: Meteorological Press, 2008: 139, 158-161, 193, 198-199, 317-318. ] |
[27] | 叶家东, 范蓓芬. 人工影响天气的统计数学方法[M]. 北京: 科学出版社, 1982: 196-202, 301. |
[27] | [ Ye Jiadong, Fan Beifen. Statistical mathematical methods of weather modification[M]. Beijing: Science Press, 1982: 196-202, 301. ] |
[28] | 邓北胜. 人工影响天气技术与管理[M]. 北京: 气象出版社, 2011: 146-147. |
[28] | [ Deng Beisheng. Weather modification technology and management[M]. Beijing: Meteorological Press, 2011: 146-147. ] |
[29] | 中国气象局科技教育司. 人工影响天气岗位培训教材[M]. 北京: 气象出版社, 2003: 216-217. |
[29] | [Science and Technology Education Department of China Meteorological Administration. On-the-job training materials of weather modification[M]. Beijing: Meteorological Press, 2003: 216-217. ] |
/
〈 |
|
〉 |