气候与水文

咸海流域陆地水储量时空变化研究

展开
  • 1.新疆师范大学地理科学与旅游学院,新疆 乌鲁木齐 830054
    2.中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐 830011
    3.新疆维吾尔自治区遥感与地理信息系统应用重点实验室,新疆 乌鲁木齐 830011
吕叶(1995-),女,硕士研究生,主要从事资源环境遥感研究. E-mail: 1294096731@qq.com

收稿日期: 2020-08-10

  修回日期: 2020-11-04

  网络出版日期: 2021-08-02

基金资助

第三季环境变化与绿色丝绸之路建设(XDA2006030102);国家重点研发计划(2017YFC0404501);中国科学院创新交叉团队项目(JCTD-2019-20);中国科学院国际合作项目(131551KYSB20160002)

Spatiotemporal variation of terrestrial water storage in Aral Sea Basin

Expand
  • 1. School of Geography Sciences and Tourism, Xinjiang Normal University, Urumqi 830054, Xinjiang, China
    2. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    3. Key Laboratory GIS & RS Application of Xinjiang Uygur Autonomous Region, Urumqi 830011, Xinjiang, China

Received date: 2020-08-10

  Revised date: 2020-11-04

  Online published: 2021-08-02

摘要

采用2002—2016年GRACE(Gravity recovery and climate experiment)重力卫星JPL-RL06M 数据分析咸海流域陆地水储量变化(Terrestrial water storage change, TWSC)时空变化特征,并结合CRU TS4.03气象数据、GLDAS-Noah地表蒸散发数据和高精度土地利用数据探究气候变化与人类活动对陆地水储量的影响。结果表明:(1) 2002—2016年咸海流域陆地水储量变化呈现-3.20 mm·a-1下降趋势,春、夏季陆地水储量呈盈余态势,秋、冬季呈现亏损状态;水储量变化在空间上表现为中部和东部盈余,周边亏损的特征。(2) 2002—2016年咸海流域降水量呈-1.14 mm·a-1下降趋势,地表温度呈0.11 ℃·a-1上升趋势;相比气温,水储量变化与降水量相关性更强。(3) 2000—2015年,咸海流域耕地面积小幅增加1.65×104 km2,水域面积减少;农作物耗水和灌溉需水的增加加剧了咸海流域水量支出,咸海流域蒸散发呈21.63×108 m3·a-1增加态势,在空间上与陆地水储量变化的相关系数最高达0.74,是影响陆地水储量变化的主要因素之一。

本文引用格式

吕叶,杨涵,黄粤,包安明,昝婵娟,李文静 . 咸海流域陆地水储量时空变化研究[J]. 干旱区地理, 2021 , 44(4) : 943 -952 . DOI: 10.12118/j.issn.1000–6060.2021.04.07

Abstract

The Aral Sea, which was once the largest inland lake in Central Asia, is located far from oceans, and thus, a vulnerable hydrological system. The water balance in the lake has changed in recent decades under the combined impacts of climate change and anthropological activities, and problems related to limited water resources and ecological environment have attracted wide attention. Analysis of the variation trend and influencing factors of terrestrial water storage (TWS), one of the most important parameters of land water variation, can provide a scientific basis for the sustainable utilization of water resources in the Aral Sea Basin. In this paper, the spatiotemporal variations of terrestrial water storage change (TWSC) in the Aral Sea Basin are evaluated using the JPL-RL06M data collected by the GRACE gravity satellite from 2002 to 2016. CRU TS4.03 meteorological data, GLDAS-Noah surface evapotranspiration data, and high-precision land use data are combined to assess time-series changes in TWSC, precipitation, temperature, and water evaporation via the linear trend method. Using a resolution of 1°×1° pixel, we calculated the correlation coefficients of various parameters, including TWSC, precipitation, and surface temperature, to explore the effects of climate change and anthropological activities on TWS in the Aral Sea Basin. Several interesting results were obtained. (1) The TWS of the Aral Sea Basin declined at a rate of -3.20 mm·a-1 in 2002—2016. A water surplus in spring and summer and a water deficit in autumn and winter were observed. Moreover, the TWSC of the Aral Sea Basin was characterized by a surplus in the central and eastern regions and deficits in peripheral areas. (2) Precipitation in the Aral Sea Basin in 2002—2016 decreased at a rate of -1.14 mm·a-1, and the surface temperature increased at a rate of 0.11 °C·a-1. Precipitation and TWSC were positively correlated in most areas of the Aral Sea Basin but negatively correlated in the middle and lower reaches of the Amu Darya Basin and the lower reaches of the Syr Darya Basin. The surface temperature was negatively correlated with TWSC in most areas, but a positive correlation between these parameters was observed in some areas in the lower reaches of the Amu Darya and Syr Darya River Basins. TWSC was more strongly correlated with precipitation than with surface temperature. (3) In 2000—2015, the cultivated land area in the Aral Sea Basin increased slightly by 1.65×104km², but the grassland and water areas decreased. Increases in water for crop management and irrigation intensified water expenditures from the Aral Sea Basin. Under the joint influence of climate change and anthropological activities, evapotranspiration in the Aral Sea Basin increased at a rate of 21.63×108 m3·a-1. The correlation coefficient between evapotranspiration and TWSC was as high as 0.74, which means this parameter may be a main factor affecting TWSC.

参考文献

[1] 阿布都米吉提·阿布力克木, 葛拥晓, 王亚俊, 等. 咸海的过去、 现在与未来[J]. 干旱区研究, 2019, 36(1):7-18.
[1] [ Ablekim Abdimijit, Ge Yongxiao, Wang Yajun, et al. The past, present and feature of the Aral Sea[J]. Arid Zone Research, 2019, 36(1):7-18. ]
[2] 杨雪雯, 王宁练, 陈安安, 等. 中亚干旱区咸海面积变化与人类活动及气候变化的关联研究[J]. 冰川冻土, 2020, 42(2):681-692.
[2] [ Yang Xuewen, Wang Ninglian, Chen An’an, et al. The relationship between human activities, climate change and area variation of the Aral Sea in the arid Central Asia[J]. Journal of Glaciology and Geocryology, 2020, 42(2):681-692. ]
[3] 姚俊强, 杨青, 毛炜峄, 等. 气候变化和人类活动对中亚地区水文环境的影响评估[J]. 冰川冻土, 2016, 38(1):222-230.
[3] [ Yao Junqiang, Yang Qing, Mao Weiyi, et al. Evaluation of the impacts of climate change and human activities on the hydrological environment in Central Asia[J]. Journal of Glaciology and Geocryology, 2016, 38(1):222-230. ]
[4] Chen F H, Wang J S, Jin L Y, et al. Rapid warming in mid-latitude Central Asia for the past 100 years[J]. Frontiers of Earth Science in China, 2009, 3(1):42-50.
[5] 龙爱华, 邓铭江, 谢蕾, 等. 气候变化下新疆及咸海流域河川径流演变及适应性对策分析[J]. 干旱区地理, 2012, 35(3):377-387.
[5] [ Long Aihua, Deng Mingjiang, Xie Lei, et al. Exploring analysis on the adaptive countermeasures to water resources evolvement under the climate change in Xinjiang and Aral Sea Basin[J]. Arid Land Geography, 2012, 35(3):377-387. ]
[6] 邓铭江, 龙爱华. 咸海流域水文水资源演变与咸海生态危机出路分析[J]. 冰川冻土, 2011, 33(6):1363-1375.
[6] [ Deng Mingjiang, Long Aihua. Evolution of hydrologic and water resources and ecological crisis in the Aral Sea Basin[J]. Journal of Glaciology and Geocryology, 2011, 33(6):1363-1375. ]
[7] 吴敬禄, 马龙, 吉力力·阿不都外力, 等. 中亚干旱区咸海的湖面变化及其环境效应[J]. 干旱区地理, 2009, 32(3):418-422.
[7] [ Wu Jinglu, Ma Long, Abuduwaili Jilili, et al. Lake surface change of the Aral Sea and its environmental effects in the arid region of the Central Asia[J]. Arid Land Geography, 2009, 32(3):418-422. ]
[8] 陈起川, 夏自强, 郭利丹, 等. 中亚湖泊地区降水量变化特征及趋势分析[J]. 水电能源科学, 2012, 30(6):13-16.
[8] [ Chen Qichuan, Xia Ziqiang, Guo Lidan, et al. Variation characteristics and trend analysis of precipitation in Central Asia lakes zones[J]. Water Resources and Power, 2012, 30(6):13-16. ]
[9] Bai J, Chen X, Li J L, et al. Changes in the area of inland lakes in arid regions of Central Asia during the past 30 years[J]. Environmental Monitoring and Assessment, 2011, 178(1-4):247-256.
[10] 成晨, 傅文学, 胡召玲, 等. 基于遥感技术的近30年中亚地区主要湖泊变化[J]. 国土资源遥感, 2015, 27(1):146-152.
[10] [ Cheng Chen, Fu Wenxue, Hu Zhaoling, et al. Changes of major lakes in Central Asia over the past 30 years revealed by remote sensing technology[J]. Remote Sensing for Land and Resources, 2015, 27(1):146-152. ]
[11] Benduhn F, Renard P. A dynamic model of the Aral Sea water and salt balance[J]. Journal of Marine Systems, 2003, 47(1):35-50.
[12] Gaybullaev B, Chen S C, Gaybullaev G. The large Aral Sea water balance: A future prospective of the large Aral Sea depending on water volume alteration[J]. Carbonates and Evaporites, 2014, 29(2):211-219.
[13] Singh A, Seitz F, Schwatke C. Inter-annual water storage changes in the Aral Sea from multi-mission satellite altimetry, optical remote sensing, and GRACE satellite gravimetry[J]. Remote Sensing of Environmrnt, 2012, 123:187-195.
[14] Yang P, Chen Y N. An analysis of terrestrial water storage variations from GRACE and GLDAS: The Tianshan Mountains and its adjacent areas, Central Asia[J]. Quaternary International, 2015, 358:106-112.
[15] Wang F, Wang Z M, Yang H B, et al. Utilizing GRACE-based groundwater drought index for drought characterization and teleconnection factors analysis in the North China Plain[J]. Journal of Hydrology, 2020, 585:124849, doi: 10.1016/j.jhydrol.2020.124849.
[16] Sun Z L, Long D, Yang W T, et al. Reconstruction of GRACE data on changes in total water storage over the global land surface and 60 basins[J]. Water Resources Research, 2020, 56(4):R026250, doi: 10.1029/2019WR026250.
[17] Deng Haijun, Chen Yaning, Li Yang. Glacier and snow variations and their impacts on regional water resources in mountains[J]. Journal of Geographical Sciences, 2019, 29(1):84-100.
[18] Hu Weijie, Liu Hailong, Bao Anming, et al. Influences of environmental changes on water storage variations in Central Asia[J]. Journal of Geographical Sciences, 2018, 28(7):985-1000.
[19] Lin M, Biswas A, Bennett E M. Spatio-temporal dynamics of groundwater storage changes in the Yellow River Basin[J]. Journal of Environmental Management, 2019, 235:84-95.
[20] Swenson S, Wahr J. Post-processing removal of correlated errors in GRACE data[J]. Geophysical Research Letters, 2006, 33(8):L025285, doi: 10.1029/2005GL025285.
[21] 张园园. GRACE重力卫星的数据处理与应用[D]. 开封: 河南大学, 2017.
[21] [ Zhang Yuanyuan. Data processing and application of GRACE gravity satellite[D]. Kaifeng: Henan University, 2017. ]
[22] Watkins M M, Wiese D N, Yuan D N, et al. Improved methods for observing Earth’s time variable mass distribution with GRACE using spherical cap mascons[J]. Journal of Geophysical Research: Soild Earth, 2015, 120(4):2648-2671.
[23] 邹贤才, 金涛勇, 朱广彬. 卫星跟踪卫星技术反演局部地表物质迁移的MASCON方法研究[J]. 地球物理学报, 2016, 59(12):4623-4632.
[23] [ Zou Xiancai, Jin Taoyong, Zhu Guangbin. Research on the MASCON method for the determination of local surface mass flux with satellite-satellite tracking technique[J]. Chinese Journal of Geophysics, 2016, 59(12):4623-4632. ]
[24] 姚海娇, 周宏飞. 中亚五国咸海流域水资源策略的博弈分析[J]. 干旱区地理, 2013, 36(4):764-771.
[24] [ Yao Haijiao, Zhou Hongfei. Game analysis of water resources strategy among the Central Asia countries around the Aral Sea Basin[J]. Arid Land Geography, 2013, 36(4):764-771. ]
[25] 陈曦, 姜逢清, 王亚俊, 等. 亚洲中部干旱区生态地理格局研究[J]. 干旱区研究, 2013, 30(3):385-390.
[25] [ Chen Xi, Jiang Fengqing, Wang Yajun, et al. Characteristics of the eco-geographical pattern in arid land of Central Asia[J]. Arid Zone Research, 2013, 30(3):385-390. ]
[26] 田向荣, 王国义, 樊彦芳. 咸海流域跨界水合作历史、形势及思考[J]. 边界与海洋研究, 2017, 2(6):90-104.
[26] [ Tian Xiangrong, Wang Guoyi, Fan Yanfang. Aral Sea Basin transboundary water cooperation: History, present situation and reflections[J]. Journal of Boundary and Ocean Studies, 2017, 2(6):90-104. ]
[27] 陈桃, 包安明, 郭浩, 等. 中亚跨境流域生态脆弱性评价及其时空特征分析——以阿姆河流域为例[J]. 自然资源学报, 2019, 34(12):2643-2657.
[27] [ Chen Tao, Bao Anming, Guo Hao, et al. Ecological vulnerability assessment for a transboundary basin in Central Asia and its spatiotemporal characteristics analysis: Taking Amu Darya River Basin as an example[J]. Journal of Natural Resources, 2019, 34(12):2643-2657. ]
[28] 李爱华, 崔胜玉, 王红瑞, 等. 基于GRACE卫星时变重力场模型的黄河中游地区水储量变化研究[J]. 自然资源学报, 2017, 32(3):461-473.
[28] [ Li Aihua, Cui Shengyu, Wang Hongrui, et al. Water storage changes in the middle reaches of the Yellow River Basin based on GRACE time variable gravitation model[J]. Journal of Natural Resources, 2017, 32(3):461-473. ]
[29] 于延胜, 陈兴伟. 基于Mann-Kendall法的径流丰枯变化过程划分[J]. 水资源与水工程学报, 2013, 24(1):60-63.
[29] [ Yu Yansheng, Chen Xingwei. Division of variation process of high and low runoff based on Mann-Kendall method[J]. Journal of Water Resources and Water Engineering, 2013, 24(1):60-63. ]
文章导航

/