气候与水文

季节性冻土水热对融雪及气温的响应

展开
  • 1.新疆水利水电科学研究院,新疆 乌鲁木齐 830049
    2.中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐 830011
    3.中国科学院大学资源与环境学院,北京 100049
古力米热·哈那提(1976-),女,高级工程师,主要从事干旱区水资源规划与水文过程研究. E-mail: skyglml@163.com

收稿日期: 2020-07-10

  修回日期: 2020-09-29

  网络出版日期: 2021-08-02

基金资助

新疆少数民族特培项目(2019D03004);国家自然科学基金项目(41961002);国家自然科学基金项目(U1603342);新疆水利科技专项项目(403-1301-JSN-5MIR)

Response of water and heat of seasonal frozen soil to snow melting and air temperature

Expand
  • 1. Xinjiang Institute of Water Resources and Hydropower Research, Urumqi 830049, Xinjiang, China
    2. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, CAS, Urumqi 830011, Xinjiang, China
    3. University of Chinese Academy of Science, Beijing 100049, China

Received date: 2020-07-10

  Revised date: 2020-09-29

  Online published: 2021-08-02

摘要

近年来,随着气候变化,伊犁河谷积雪消融加快,极端水文事件的频度和强度也在加大。通过利用中国科学院天山积雪站附近小流域的土壤水热和积雪融雪观测数据,对研究区积雪消融规律、冻土水热变化特征及其对气温和融雪量的响应进行了分析。结果表明:在冻土融解阶段,土壤温度的变化依赖大气温度的变化,而土壤水分受融雪量和气温的影响较大,高度相关。表层土壤含水率的变幅最大,而深层土壤水分值较稳定,土壤水热的季节性变化自秋-冬-春大致呈现“下降-平稳-上升”的趋势。在冻土层上边界,土壤含水率随着累积融雪量的增加而增加并达到饱和值,而冻土层下边界(40 cm深度)土壤水分保持非饱和稳定状态。在山区,降雪量是水资源形成的主要来源。融雪量与大气温度的相关性显著(系数为0.785),融雪量对水资源形成的贡献率为40%左右。研究冻土水热对融雪和气温的响应过程,对于新疆水资源形成机理、转化利用以及洪水预报具有重要的参考价值。

本文引用格式

古力米热·哈那提,张音,苏里坦,胡可可 . 季节性冻土水热对融雪及气温的响应[J]. 干旱区地理, 2021 , 44(4) : 889 -896 . DOI: 10.12118/j.issn.1000–6060.2021.04.01

Abstract

In recent years, the speed of snow melting has accelerated due to climate change. Thus, the frequency and intensity of extreme hydrological events have also increased, and the Ili River Valley has become a high-incidence area in Xinjiang, China for spring snow-melting floods. This study attempts to analyze the dynamic process of snow melting, the characteristics of the change in water and heat in frozen soil and its response to temperature, and the amount of snow melting that occurs in a short time scale during the whole year’s snow cover period by using the observed data regarding the soil temperature, humidity, and snow melting in the Araltobe watershed near the Tianshan Station for Snow Cover and Avalanche Research of the Chinese Academy of Sciences. The results show that the snow melting in mountain areas can be divided into three stages, namely, the complete ablation stage, the incomplete melting stage, and the complete ablation stage. During the frozen soil thawing stage, the change in the soil temperature depends on the atmospheric temperature, and the soil moisture is highly correlated with the snow melting and temperature. The change in the soil moisture content is greater in the surface layer, whereas it remains relatively stable in the deep layer. The seasonal change of soil temperature and humidity from autumn to winter to spring generally follows a “descending, stabilizing, and rising” trend. In the upper layer of the frozen soil, the soil water content increases with the increase of the snow melting until it reaches the saturation value, whereas in the lower boundary (40 cm) of the frozen soil, the soil water content does not increase with the continuous increase of the accumulated snowmelt, but rather, it maintains a stable unsaturated water content, which indicates that the soil flow occurs in the shallow surface layer (0-40 cm) after the snowmelt water infiltrates into the soil. Additionally, the results show that snowfall is the main source of water resources. The amount of snowmelt is significantly correlated with temperature (the correlation coefficient is 0.785), and the rate of the contribution of the snowmelt to the formation of the water resources is about 40%. The study of the response process of the frozen soil hydrothermal to the snowmelt and temperature is of important reference value in the formation mechanism of water resources and in the transformation and utilization of flood forecasting in Xinjiang.

参考文献

[1] 冉洪伍, 范继辉, 黄菁. 冻融过程土壤水热力耦合作用及其模型研究进展[J]. 草业科学, 2019, 36(4):991-999.
[1] [ Ran Hongwu, Fan Jihui, Huang Jing. Review of the coupling of water and heat in the freeze-thaw process and its model of frozen soil[J]. Pratacultural Science, 2019, 36(4):991-999. ]
[2] 王慧, 刘志辉, 张波. 干旱区季节性积雪融雪期含水率变化及其模拟——以新疆军塘湖流域为例[J]. 干旱区资源与环境, 2013, 27(8):131-136.
[2] [ Wang Hui, Liu Zhihui, Zhang Bo. Seasonal changes of snow moisture in arid area during snowmelt period and the simulation[J]. Journal of Arid Land Resources and Environment, 2013, 27(8):131-136. ]
[3] 张威, 王宁练, 李想, 等. 近20 a西喀喇昆仑地区吉尔吉特河流域冰川面积变化及其对气候变化的响应[J]. 山地学报, 2019, 37(3):347-358.
[3] [ Zhang Wei, Wang Ninglian, Li Xiang, et al. Glacier changes and its response to climate change in the Gilgit River Basin, western Karakorum Mountains over the past 20 years[J]. Mountain Research, 2019, 37(3):347-358. ]
[4] 蒋宗立, 王磊, 张震, 等. 2000—2014年喀喇昆仑山音苏盖提冰川表面高程变化[J]. 干旱区地理, 2020, 43(1):12-19.
[4] [ Jiang Zongli, Wang Lei, Zhang Zhen, et al. Surface elevation changes of Yengisogat Glacier between 2000 and 2014[J]. Arid Land Geography, 2020, 43(1):12-19. ]
[5] 张音, 古丽贤·吐尔逊拜, 苏里坦, 等. 近60 a来新疆不同海拔气候变化的时空特征分析[J]. 干旱区地理, 2019, 42(4):822-829.
[5] [ Zhang Yin, Tuerxunbai Gulixian, Su Litan, et al. Spatial and temporal characteristics of climate change at different altitudes in Xinjiang in the past 60 years[J]. Arid Land Geography, 2019, 42(4):822-829. ]
[6] Li Changbin, Qi Jiaguo, Wang Shuaibing, et al. Spatiotemporal characteristics of alpine snow and ice melt under a changing regional climate: A case study in northwest China[J]. Quaternary International, 2015, 358:126-136.
[7] Braithwaite R, Roger J. Temperature and precipitation climate at the equilibrium-line altitude of glaciers expressed by the degree-day factor for melting snow[J]. Journal of Glaciology, 2008, 186(54):437-444.
[8] 郭玲鹏, 李兰海, 徐俊荣, 等. 气温变化条件下融雪速率和土壤水分变化的同步观测试验[J]. 干旱区研究, 2012, 29(5):890-897.
[8] [ Guo Lingpeng, Li Lanhai, Xu Junrong, et al. Experimental study on simultaneous observation of snowmelt and soil moisture content under air temperature increase[J]. Arid Zone Research, 2012, 29(5):890-897. ]
[9] 刘继龙, 刘璐, 付强, 等. 黑土区玉米地土壤温度的时空变异性研究[J]. 灌溉排水学报, 2019, 38(1):31-35.
[9] [ Liu Jilong, Liu Lu, Fu Qiang, et al. Spatiotemporal variation of soil temperature within a corn field in black soil[J]. Journal of Irrigation and Drainage, 2019, 38(1):31-35. ]
[10] 杨绍富, 刘志辉, 闫彦, 等. 融雪期土壤湿度与土壤温度、气温的关系[J]. 干旱区研究, 2008, 25(5):642-646.
[10] [ Yang Shaofu, Liu Zhihui, Yan Yan, et al. Preliminary study on soil humidity and its relationships with soil temperature and air temperature in snow melting season[J]. Arid Zone Research, 2008, 25(5):642-646. ]
[11] Cheng H, Wang G, Hu H, et al. The variation of soil temperature and water content of seasonal frozen soil with different vegetation coverage in the headwater region of the Yellow River, China[J]. Environmental Geology, 2008, 54(8):1755-1762.
[12] Iwata Y, Hayashi M, Suzukli S, et al. Effects of snow cover on soil freezing, water movement, and snowmelt infiltration: A paired plot experiment[J]. Water Resources Research, 2010, 46(9):2095-2170.
[13] 陈渤黎, 罗斯琼, 吕世华, 等. 基于CLM模式的青藏高原土壤冻融过程陆面特征研究[J]. 冰川冻土, 2017, 39(4):760-770.
[13] [ Chen Boli, Luo Siqiong, Lyu Shihua, et al. Land surface characteristics in soil freezing and thawing process on the Tibetan Plateau based on community land model[J]. Journal of Glaciology and Geocryology, 2017, 39(4):760-770. ]
[14] 陈枭萌, 文方, 顾宗斌, 等. 季节性冻土的水热作用机制研究——以古尔班通古特沙漠南缘为例[J]. 灌溉排水学报, 2019, 38(12):51-56.
[14] [ Chen Xiaomeng, Wen Fang, Gu Zongbin, et al. Study on the hydrothermal mechanism of seasonal frozen soil: A case study about the southern margin of the Gurbantunggut Desert[J]. Journal of Irrigation and Drainage, 2019, 38(12):51-56. ]
[15] 郝建盛, 张飞云, 黄法融, 等. 新疆伊犁地区季节冻土沿海拔的分布规律及其影响因素[J]. 冰川冻土, 2019, 41(2):1-8.
[15] [ Hao Jiansheng, Zhang Feiyun, Huang Farong, et al. Altitudinal distribution pattern of seasonally frozen ground and its influencing factors in Ili[J]. Journal of Glaciology and Geocryology, 2019, 41(2):1-8. ]
[16] Zheng Donghai, Velde R V, Su Zhongbo, et al. Impact of soil freeze-thaw mechanism on the runoff dynamics of two Tibetan rivers[J]. Journal of Hydrology, 2018, 563:382-394.
[17] 盛光伟, 肖鹏峰, 张学良, 等. 新疆天山及北疆地区积雪反照率差异[J]. 干旱区地理, 2019, 42(4):774-781.
[17] [ Sheng Guangwei, Xiao Pengfeng, Zhang Xueliang, et al. Differences in snow albedo between Tianshan Mountains and northern Xinjiang[J]. Arid Land Geography, 2019, 42(4):774-781. ]
[18] 张威, 纪然. 辽宁朝阳地区季节冻土最大冻土深度和持续冻结时间与气候变化的响应研究[J]. 冰川冻土, 2018, 40(1):18-25.
[18] [ Zhang Wei, Ji Ran. Response of maximum seasonally frozen depth and duration of soil frozen to climate change in Chaoyang Prefecture of Liaoning Province[J]. Journal of Glaciology and Geocryology, 2018, 40(1):18-25. ]
[19] 周扬, 徐维新, 张娟, 等. 2013—2015年青藏高原玛多地区两次动态融雪过程及其与气温关系对比分析[J]. 自然资源学报, 2017, 32(1):101-133.
[19] [ Zhou Yang, Xu Weixin, Zhang Juan, et al. A comparative analysis of the two dynamic snow-melting process and their relationship with air temperature during 2013—2015 in the area of Maduo, Tibetan Plateau[J]. Journal of Natural Resources, 2017, 32(1):101-133. ]
[20] 周扬, 徐维新, 白爱娟, 等. 青藏高原沱沱河地区动态融雪过程及其与气温关系分析[J]. 高原气象, 2017, 36(1):24-32.
[20] [ Zhou Yang, Xu Weixin, Bai Aijuan, et al. Dynamic snow-melting process and its relationship with air temperature in Tuotuohe, Qinghai-Xizang Plateau[J]. Plateau Meteorology, 2017, 36(1):24-32. ]
[21] 张娟, 徐维新, 王力, 等. 三江源腹地玉树地区动态融雪过程及其与气温关系分析[J]. 高原气象, 2018, 37(4):936-945.
[21] [ Zhang Juan, Xu Weixin, Wang Li, et al. Dynamic snow melting process and its relationship with air temperature in the hinterland of Sanjiangyuan region in Qinghai-Tibetan Plateau[J]. Plateau Meteorology, 2018, 37(4):936-945. ]
[22] 杨梅学, 姚檀栋, 丁永建, 等. 藏北高原D110点不同季节土壤温度的日变化特征[J]. 地理科学, 1999(6):570-574.
[22] [ Yang Meixue, Yao Tandong, Ding Yongjian, et al. The daily variation of the soil temperature in different seasons at site D110 in the northern part of Xizang Plateau[J]. Scientia Geographica Sinica, 1999(6):570-574. ]
文章导航

/