区域发展

呼和浩特市生活性服务业空间布局特征及评价

展开
  • 内蒙古师范大学地理科学学院,内蒙古 呼和浩特 010022
李小璨(1995-),女,硕士研究生,主要从事经济地理与区域发展方面的研究. E-mail: lixiaocan123@126.com

收稿日期: 2020-05-16

  修回日期: 2021-04-22

  网络出版日期: 2021-08-02

基金资助

国家自然科学基金(42001127);内蒙古师范大学研究生科研创新基金资助项目(CXJJS19138);内蒙古师范大学高层次人才科研项目(2018YJRC007)

Characteristics and evaluation of the spatial distribution of life service industry in Hohhot City

Expand
  • College of Geographical Science, Inner Mongolia Normal University, Hohhot 010022, Inner Mongolia, China

Received date: 2020-05-16

  Revised date: 2021-04-22

  Online published: 2021-08-02

摘要

通过以呼和浩特市为例,采用多源城市大数据,基于核密度估计法、局域Getis-Ord G*指数、标准差椭圆、Ripley’s K函数分析生活性服务业空间布局特征,运用双变量莫兰指数对各类生活性服务业的供给与需求进行评价并提出优化布局建议。研究表明:(1) 生活性服务业集聚中心的密度值随着距城市中心距离的增加而降低;各类生活性服务业分布重心大致相同,东西方向上发展较快。(2) 生活性服务业分布存在显著的冷热点集聚区;各类生活性服务业在不同尺度上的空间集聚表现不同,居民与家庭服务、医疗健康服务、住宿餐饮服务在较大空间范围内表现出集聚特征,区位选择的尺度范围较大。(3) 各类生活性服务业的供给与需求均呈空间正相关关系,但存在显著差异;在供需平衡的原则下,昭乌达路、鄂尔多斯大街、新华大街等几条主要道路上的生活性服务业空间布局存在明显不合理之处。

本文引用格式

李小璨,阿荣,佟宝全 . 呼和浩特市生活性服务业空间布局特征及评价[J]. 干旱区地理, 2021 , 44(4) : 1186 -1197 . DOI: 10.12118/j.issn.1000–6060.2021.04.30

Abstract

The urban life service industry is closely related to the daily life of urban residents. In this study, the central urban area of Hohhot City, Inner Mongolia, China was taken as an example. Multisource urban big data were collected, and the spatial layout characteristics of the life service industry were analyzed with the kernel density estimation method, local Getis-Ord G* index, standard deviation ellipse, and Ripley’s K function. Then, bivariate Moran’s I was used to evaluate the supply and demand of various life service industries and suggest an optimal layout. The results are as follows. (1) The density of agglomeration centers of the life service industry decreased with increasing distance from the city center. The distribution centers of various life service industries showed roughly the same trend. However, the development was more rapid in east-west directions. (2) There were significant cold and hot clusters in the distribution of the life service industry. Various types of life service industry had different spatial agglomerations at different spatial scales. Residential and family services, medical health services, and accommodation and catering services showed a large range of space clustering features, and the scale of location selection was relatively large. (3) The supply and demand of all types of life service industries had a positive correlation spatially, but there were significant differences. Under the principle of balance between supply and demand, there were obvious irrational points in the spatial layout of the life service industry on several major roads, such as Zhaowuda Road, Ordos Street, and Xinhua Street. This research can serve as a reference for the future spatial planning and structural adjustment of the service industry in Hohhot City.

参考文献

[1] 周麟, 沈体雁. 大城市内部服务业区位研究进展[J]. 地理科学进展, 2016, 35(4):409-419.
[1] [ Zhou Lin, Shen Tiyan. Progress of services location studies in metropolis[J]. Progress in Geography, 2016, 35(4):409-419. ]
[2] 张文忠, 大城市服务业区位理论及其实证研究[J]. 地理研究, 1999, 15(3):273-281.
[2] [ Zhang Wenzhong. A study of metropolitan service industry location theory and substantiation[J]. Geographical Research, 1999, 15(3):273-281. ]
[3] 王志锋, 张维凡, 朱中华. 中国城镇化70年: 基于地方政府治理视角的回顾和展望[J]. 经济问题, 2019(7):1-8.
[3] [ Wang Zhifeng, Zhang Weifan, Zhu Zhonghua. 70 years of China’s urbanization: Retrospect and prospect from the perspective of local governance[J]. On Economic Problems, 2019(7):1-8. ]
[4] 吴煜, 李永浮. 居民生活服务业与人口匹配关系研究——基于上海浦东新区实证研究[J]. 上海经济研究, 2019(2):67-75.
[4] [ Wu Yu, Li Yongfu. A study on residents life service and population matching relationship: An empirical research of Shanghai Pudong New District[J]. Shanghai Journal of Economics, 2019(2):67-75. ]
[5] Lee S, Seo J G, Webster C. The decentralising metropolis: Economic diversity and commuting in the US suburb[J]. Urban Studies, 2006, 43(13):2525-2549.
[6] Dong H W. Concentration or dispersion? Location choice of commercial developers in the Portland metro politan area, 2000—2007[J]. Urban Geography, 2013, 34(7):989-1010.
[7] 邱灵, 申玉铭, 任旺兵. 北京生产性服务业与制造业的关联及空间分布[J]. 地理学报, 2008, 63(12):1299-1310.
[7] [ Qiu Ling, Shen Yuming, Ren Wangbing. Industrial relevancy and spatial distribution between producer services and manufacturing in Beijing City[J]. Acta Geographica Sinica, 2008, 63(12):1299-1310. ]
[8] 申玉铭, 邱灵, 尚于力. 京沪生产性服务业比较研究[J]. 地理研究, 2009, 28(2):441-450.
[8] [ Shen Yuming, Qiu Ling, Shang Yuli. A comparative study of Beijing-Shanghai producer service industry[J]. Geographical Research, 2009, 28(2):441-450. ]
[9] 薛东前, 石宁, 公晓晓. 西安市生产者服务业空间布局特征与集聚模式研究[J]. 地理科学, 2011, 31(10):1195-1201.
[9] [ Xue Dongqian, Shi Ning, Gong Xiaoxiao. Spatial features and agglomeration of producer services in Xi’an City, China[J]. Scientia Geographica Sinica, 2011, 31(10):1195-1201. ]
[10] 李普峰, 李同升. 西安市生产性服务业空间格局及其机制分析[J]. 城市发展研究, 2009, 16(3):87-91.
[10] [ Li Pufeng, Li Tongsheng. Spatial patter and mechanism analysis of producer services in Xi’an[J]. Urban Development Studies, 2009, 16(3):87-91. ]
[11] 甄峰, 刘慧, 郑俊. 城市生产性服务业空间分布研究: 以南京为例[J]. 世界地理研究, 2008, 17(1):24-31.
[11] [ Zhen Feng, Liu Hui, Zheng Jun. Spatial distribution of urban producer service: A case study of Nanjing[J]. World Regional Studies, 2008, 17(1):24-31. ]
[12] 杨吾扬. 北京市零售商业与服务业中心和网点的过去、现在和未来[J]. 地理学报, 1994, 49(1):9-17.
[12] [ Yang Wuyang. The retailing and services center and network of Beijing: Then, now and long before[J]. Acta Geographica Sinica, 1994, 49(1):9-17. ]
[13] 赵向阳, 杜洪涛, 赵鹏. 基于标准化规则的城市POI数据库建库研究: 以济南市为例[J]. 城市勘测, 2013, 8(4):21-24.
[13] [ Zhao Xiangyang, Du Hongtao, Zhao Peng. Research on building database of urban POI based on normalization rules: Taking Jinan as a case study[J]. Urban Geotechnical Investigation & Surveying, 2013, 8(4):21-24. ]
[14] 贾晓婷, 雷军, 武荣伟, 等. 基于POI的城市休闲空间格局分析——以乌鲁木齐市为例[J]. 干旱区地理, 2019, 42(4):943-952.
[14] [ Jia Xiaoting, Lei Jun, Wu Rongwei, et al. Urban recreation space pattern analysis based on POI data: A case study of Urumqi[J]. Arid Land Geography, 2019, 42(4):943-952. ]
[15] Zhang Xiuyuan, Du Shihong, Wang Qiao. Hierarchical semantic cognition for urban functional zones with VHR satellite images and POI data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 132:170-184.
[16] Mckenzie G, Janowicz K, Gao S, et al. How where is when? On the regional variability and resolution of geosocial temporal signatures for points of interest[J]. Computers, Environment and Urban Systems, 2015, 54:336-346.
[17] 陈蔚珊, 柳林, 梁育填. 基于POI数据的广州零售商业中心热点识别与业态集聚特征分析[J]. 地理研究, 2016, 35(4):703-716.
[17] [ Chen Weishan, Liu Lin, Liang Yutian. Retail center recognition and spatial aggregating feature analysis of retail formats in Guangzhou based on POI data[J]. Geographical Research, 2016, 35(4):703-716. ]
[18] 禹文豪, 艾廷华, 杨敏, 等. 利用核密度与空间自相关进行城市设施兴趣点分布热点探测[J]. 武汉大学学报, 2016, 41(2):221-227.
[18] [ Yu Wenhao, Ai Tinghua, Yang Min, et al. Detecting “hot spots” of facility POIs based on kernel density estimation and spatial autocorrelation technique[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2):221-227. ]
[19] 冉钊, 周国华, 吴佳敏, 等. 基于POI数据的长沙市生活性服务业空间格局研究[J]. 世界地理研究, 2019, 28(3):163-172.
[19] [ Ran Zhao, Zhou Guohua, Wu Jiamin, et al. Study on spatial pattern of consumer service industry in Changsha based on POI data[J]. World Regional Studies, 2019, 28(3):163-172. ]
[20] 薛冰, 肖骁, 李京忠, 等. 基于POI大数据的城市零售业空间热点分析——以辽宁省沈阳市为例[J]. 经济地理, 2018, 38(5):36-43.
[20] [ Xue Bing, Xiao Xiao, Li Jingzhong, et al. POI-based analysis on retail’s spatial hot blocks at a city level: A case study of Shenyang, China[J]. Economic Geography, 2018, 38(5):36-43. ]
[21] 王振坡, 牛家威, 王丽艳. 基于POI大数据的天津市居民居住就业空间特征及其影响因素研究[J]. 地域研究与开发, 2020, 39(2):58-63.
[21] [ Wang Zhenpo, Niu Jiawei, Wang Liyan. Spatial characteristics and influencing factors of residents’ residential employment in Tianjin City based on POI data[J]. Areal Research and Development, 2020, 39(2):58-63. ]
[22] 赵宏波, 余涤非, 苗长虹, 等. 基于POI数据的郑州市文化设施的区位布局特征与影响因素研究[J]. 地理科学, 2018, 38(9):1525-1534.
[22] [ Zhao Hongbo, Yu Difei, Miao Changhong, et al. The location distribution characteristics and influencing factors of cultural facilities in Zhengzhou based on POI data[J]. Scientia Geographica Sinica, 2018, 38(9):1525-1534. ]
[23] Lin G, Chen X X, Liang Y T. The location of retail stores and street centrality in Guangzhou China[J]. Applied Geography, 2018, 100:12-20.
[24] 李博闻, 黄正东, 刘稳. 基于公交服务需求与供给匹配程度的公交站点布局评价——以武汉市为例[J]. 现代城市研究, 2019(5):99-105.
[24] [ Li Bowun, Huang Zhengdong, Liu Wen. Assessment of the bus stop locations based on the coupling level between demand and supply of bus service: A case study of Wuhan[J]. Modern Urban Research, 2019(5):99-105. ]
[25] 王法辉. 基于GIS 的数量方法与应用[M]. 北京: 商务印书馆, 2009: 45-80.
[25] [ Wang Fahui. Quantitative method and application based on GIS[M]. Beijing: Commercial Press, 2009: 45-80. ]
[26] 高子轶, 张海峰. 基于POI数据的西宁市零售业空间格局探究[J]. 干旱区地理, 2019, 42(5):1195-1204.
[26] [ Gao Ziyi, Zhang Haifeng. Research on spatial pattern of Xining retail industry based on POI data[J]. Arid Land Geography, 2019, 42(5):1195-1204. ]
[27] 湛东升, 孟斌. 基于社会属性的北京市居民居住与就业空间集聚特征[J]. 地理学报, 2013, 68(12):1607-1618.
[27] [ Zhan Dongsheng, Meng Bin. Spatial clustering analysis of residential and employment distribution in Beijing based on their social characteristics[J]. Acta Geographica Sinica, 2013, 68(12):1607-1618. ]
[28] 高长春, 刘贤赵, 李朝奎, 等. 近20年来中国能源消费碳排放时空格局动态[J]. 地理科学进展, 2016, 35(6):747-757.
[28] [ Gao Changchun, Liu Xianzhao, Li Chaokui, et al. Spatiotemporal dynamics of carbon emissions by energy consumption in China from 1995 to 2014[J]. Progress in Geography, 2016, 35(6):747-757. ]
[29] 柳雨杉, 董晔. 基于指数分析法的乌鲁木齐市居住格局研究[J]. 干旱区地理, 2019, 42(3):698-705.
[29] [ Liu Yushan, Dong Ye. Residential structure of Urumqi City based on index analysis method[J]. Arid Land Geography, 2019, 42(3):698-705. ]
[30] 马燕飞, 沙占江, 牛志宁, 等. 环青海湖区沙漠化土地景观格局自相关分析[J]. 干旱区研究, 2010, 27(6):954-961.
[30] [ Ma Yanfei, Sha Zhanjiang, Niu Zhining, et al. Spatial autocorrelation analysis on sandy landscape pattern in the peripheral regions of the Qinghai Lake[J]. Arid Zone Research, 2010, 27(6):954-961. ]
[31] Christoph T, Tomas R. The evolving concept of retail attractiveness: What makes retail agglomerations attractive when customers shop at them?[J]. Journal of Retailing and Consumer Services, 2008, 15(3):127-143.
文章导航

/