土壤资源

矿物复合保水剂对新疆干旱区凝结水吸持效果研究

展开
  • 1.中国地质科学院水文地质环境地质研究所,河北 石家庄 050061
    2.中国地质调查局/河北省地下水污染机理与修复重点实验室,河北 石家庄 050061
    3.中国地质调查局水文地质环境地质调查中心,河北 保定 071051
    4.新疆农八师农林牧局土壤改良试验站,新疆 石河子 832000
李备(1990-),男,助理研究员,主要从事水文地质环境地质相关研究. E-mail: pingpangplayer@126.com

收稿日期: 2020-08-13

  修回日期: 2020-11-22

  网络出版日期: 2021-08-02

基金资助

中国地质调查局地质调查项目(DD20190331);中国地质调查局地质调查项目(1212011220982);国家重点研发计划(2018YFC1803001);中国地质科学院基本科研业务费项目(SK202116)

Retention effect of mineral superabsorbent composite on condensation water in arid areas in Xinjiang

Expand
  • 1. Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, Heibei, China
    2. Key Laboratory of Groundwater Contamination and Remediation, China Geological Survey (CGS) & Hebei Province, Shijiazhuang 050061, Heibei, China
    3. Hydrogeological and Environmental Geological Survey Center of China Geological Survey, Baoding 071051, Heibei, China
    4. Soil Improvement Experimental Station of Agriculture, Forestry and Animal Husbandry Bureau of Xinjiang No. 8 Division, Shihezi 832000, Xinjiang, China

Received date: 2020-08-13

  Revised date: 2020-11-22

  Online published: 2021-08-02

摘要

采用称重法在新疆石河子市121团土壤改良实验站进行了矿物复合保水剂对干旱区凝结水的高效利用研究实验,根据实验数据分析了该地区凝结水的生成规律及矿物复合保水剂组成的人工保水层对凝结水的吸持效果。结果表明:凝结水来源于地下某深度到地表的水气和空气中的水气,发生时间基本在22:00—09:00,影响凝结水生成的主要因素有近地面大气温度、近地表土壤温度、空气相对湿度、风速等因素。由于向近地表土壤加入了矿物复合保水剂,使得混合层成为了一个人工保水层,该人工保水层对研究区的凝结水量和蒸发量都产生了影响,实验研究表明,人工保水层分布在近地表5~10 cm处对凝结水吸持效果最佳。

本文引用格式

李备,张发旺,李勇军,孟建,朱拥军,石荣媛,王雅琴 . 矿物复合保水剂对新疆干旱区凝结水吸持效果研究[J]. 干旱区地理, 2021 , 44(4) : 1135 -1140 . DOI: 10.12118/j.issn.1000–6060.2021.04.25

Abstract

This study was undertaken at the comprehensive field test site of the soil improvement experimental station of the Shihezi 121 Regiment in the northern Xinjiang Uygur Autonomous Region, China; this site is in the middle of the northern foot of the Tianshan Mountains, along the south margin of the vast Gurbantunggut Desert. In the study, a weighing method is used to conduct an experiment on the efficiency of a mineral superabsorbent composite in the utilization of water from condensation in arid areas. On the basis of the obtained experimental data, analysis was conducted on the generation law of condensation water in the region, the condensation water retention effect of the artificial water retention layer formed after introducing the mineral superabsorbent composite to the topsoil, and the transport law of the zero-flux plane underground with temperature and time. In the experiment, a microlysimeter was used to verify the existence and quantity of condensation water in the region of interest. Through continuous observation, the generation time of the condensation water in the region was investigated. Using bottom-sealed and bottom-open test tubes of the microlysimeter, the condensation water was determined to come from two sources: the condensation of water vapor in the air onto the surface soil as the surface temperature dropped and the condensation of water vapor from the zero-flux plane at a certain depth under the surface soil. The experimental data indicate that the condensation water in the region forms primarily during the 22:00-09:00 time period. The condensation process begins at approximately 21:00, and the yield of condensation water is initially high, later reducing slightly at around 06:00. As the difference between the ground temperature and near-surface temperature narrows after sunrise, the condensation gradually decreases and transitions into evaporation. The main factors influencing the formation of condensation water are the near-surface air temperature, the near-surface soil temperature, the relative humidity in the air, and the wind speed. The introduction of a mineral superabsorbent composite to the near-surface soil was found to cause the mixed layer to become an artificial water retention layer, which affects the quantity of both condensation and evaporation in the region. The experimental results reveal that condensation water forms mainly at the soil surface; the volume of condensation water varies in the range of 0-10 cm, and the artificial water retention layer demonstrated the best retention effect on condensation water at a distance 5-10 cm from the surface. In arid areas, although the volume of condensation is much smaller than that of evaporation, the huge temperature difference between day and night is favorable to the formation of condensation water. The range of the change in the ground temperature mainly occurs within 0-45 cm underground and occurs faster than the change in the near-surface air temperature, thus favoring the formation of condensation water. Condensation water is extremely valuable to drought-enduring plants in arid areas. Studies on the water retention effect of the artificial layer formed by adding a mineral superabsorbent composite on condensation water in arid areas are very important for the protection of vegetation, the identification of potential ecoenvironmental improvements, and the control of desertification in arid and semiarid regions.

参考文献

[1] 郭斌, 李卫红, 郝兴明, 等. 极端干旱区不同下垫面土壤凝结水试验研究[J]. 地理科学进展, 2012, 31(9):1171-1178.
[1] [ Guo Bin, Li Weihong, Hao Xingming, et al. Experimental study on soil condensation water on different underlying surfaces in extreme arid areas[J]. Progress in Geography Science, 2012, 31(9):1171-1178. ]
[2] 赵领娣, 李莎莎, 赵志博, 等. 干旱半干旱区城市生态效率时空演变及区域差异分析[J]. 干旱区地理, 2020, 43(2):449-457.
[2] [ Zhao Lingdi, Li Shasha, Zhao Zhibo, et al. Temporal and spatial evolution and regional difference analysis of urban ecological efficiency in arid and semiarid areas[J]. Arid Land Geography, 2020, 43(2):449-457. ]
[3] 高瑜莲, 柳锦宝, 柳维扬, 等. 近14 a新疆南疆绿洲地区地表蒸散与干旱的时空变化特征研究[J]. 干旱区地理, 2019, 42(4):830-837.
[3] [ Gao Yulian, Liu Jinbao, Liu Weiyang, et al. Spatiotemporal variation characteristics of surface evapotranspiration and drought at the oasis area of the southern Xinjiang in recent 14 years[J]. Arid Land Geography, 2019, 42(4):830-837. ]
[4] 王泽锋, 胡顺军, 李浩. 古尔班通古特沙漠南缘丘间地梭梭群落蒸散特征[J]. 干旱区地理, 2018, 41(6):1303-1309.
[4] [ Wang Zefeng, Hu Shunjun, Li Hao. Evapotranspiration characteristics of Haloxylon ammodendron community in interdune lowland at the southern edge of Gurbantunggut Desert[J]. Arid Land Geography, 2018, 41(6):1303-1309. ]
[5] Guo Hao, Qian Yong, Yuan Guangxiang, et al. Research progress on the soil vapor extraction[J]. Journal of Groundwater Science and Engineering, 2020, 8(1):57-66.
[6] 白爱宁, 余建, 边春雷. 土壤吸湿凝结水研究进展[J]. 内蒙古林业科技, 2010, 36(1):50-53.
[6] [ Bai Aining, Yu Jian, Bian Chunlei. Research progress on soil absorption and condensation water[J]. Journal of Inner Mongolia Forestry Science and Technology, 2010, 36(1):50-53. ]
[7] 郭斌, 陈亚宁, 郝兴明. 不同下垫面土壤凝结水特征及其影响因素[J]. 自然资源学报, 2011, 26(11):1963-1973.
[7] [ Guo Bin, Chen Yaning, Hao Xingming. Characteristics of soil condensation water and its influencing factors on different underlying surfaces in the lower reaches of the Tarim River[J]. Journal of Natural Resources, 2011, 26(11):1963-1973. ]
[8] 陈荣毅. 古尔班通古特沙漠表层土壤凝结水水汽来源特征分析[J]. 中国沙漠, 2012, 32(4):985-989.
[8] [ Chen Rongyi. Source of soil condensation water in the Gurbantunggut Desert[J]. Journal of Desert Research, 2012, 32(4):985-989. ]
[9] 孙自永, 余绍文, 周爱国, 等. 新疆罗布泊地区凝结水试验[J]. 地质科技情报, 2008, 27(2):91-95.
[9] [ Sun Ziyong, Yu Shaowen, Zhou Aiguo, et al. Experimental study on the condensation water in Lop Nur Region, Xinjiang[J]. Geological Science and Technology Information, 2008, 27(2):91-95. ]
[10] 李备, 韩占涛, 张发旺, 等. 丙烯酸—膨润土保水剂的制备及其保水效果研究[J]. 江苏农业科学, 2018, 46(5):289-292.
[10] [ Li Bei, Han Zhantao, Zhang Fawang, et al. Preparation of acrylic acid-bentonite water-retaining agent and its water-retaining effect[J]. Jiangsu Agricultural Sciences, 2018, 46(5):289-292. ]
[11] 李备, 张发旺, 韩占涛, 等. 一种矿物复合保水剂及其制备方法[P]. 河北: CN106279499A, 2017-01-04.
[11] [ Li Bei, Zhang Fawang, Han Zhantao, et al. A mineral composite water-retaining agent and its preparation method[P]. Hebei: CN106279499A, 2017-01-04.]
[12] 方静. 凝结水的生态水文效应研究进展[J]. 中国沙漠, 2013, 33(2):583-589.
[12] [ Fang Jing. An overview on eco-hydrological effects of condensation water[J]. Journal of Desert Research, 2013, 33(2):583-589. ]
[13] 郭占荣, 韩双平. 西北干旱地区凝结水试验研究[J]. 水科学进展, 2002, 13(5):623-628.
[13] [ Guo Zhanrong, Han Shuangping. Experimental study on the condensation water in arid area, northwestern China[J]. Advances in Water Science, 2002, 13(5):623-628. ]
[14] 刘新平, 何玉惠, 赵学勇, 等. 科尔沁沙地不同生境土壤凝结水的试验研究[J]. 应用生态学报, 2009, 20(8):1918-1924.
[14] [ Liu Xinping, He Yuhui, Zhao Xueyong, et al. Soil condensation water in different habitats in Horqin Sandy Land: An experimental study[J]. Chinese Journal of Applied Ecology, 2009, 20(8):1918-1924. ]
[15] 邵新民, 于得胜, 王蓓. 新疆乌拉泊水均衡试验场凝结水对地下水补给的观测研究[J]. 水文地质工程地质, 2012, 39(2):7-12.
[15] [ Shao Xinmin, Yu Desheng, Wang Bei. Research on the observation of condensed recharge in a water balance field of Urab in Xinjiang[J]. Hydrogeology and Engineering Geology, 2012, 39(2):7-12. ]
[16] 郭占荣, 刘建辉. 中国干旱半干旱地区土壤凝结水研究综述[J]. 干旱区研究, 2005, 22(4):1576-1580.
[16] [ Guo Zhanrong, Liu Jianhui. An overview on soil condensate in arid and semiarid regions in China[J]. Arid Zone Research, 2005, 22(4):1576-1580. ]
文章导航

/