土壤资源

咸水灌溉条件下塔里木河下游沙漠土壤水盐运移数值模拟

展开
  • 1.中国科学院新疆生态与地理研究所荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐 830011
    2.中国科学院新疆生态与地理研究所莫索湾沙漠研究站,新疆 石河子 832000
    3.中国科学院新疆生态与地理研究所塔克拉玛干沙漠研究站,新疆 库尔勒 841000
    4.中国科学院大学,北京 100049
    5.鲁东大学,山东 烟台 264039
王世明(1994-),男,硕士研究生,主要从事土壤水盐运移研究. E-mail: 1443661410@qq.com

收稿日期: 2020-04-01

  修回日期: 2020-06-11

  网络出版日期: 2021-08-02

基金资助

中国铁路总公司科技研究开发计划子课题(2017G004-E-02);新疆维吾尔自治区重大科技专项子课题(2016A03008-3-2);新疆维吾尔自治区重大科技专项子课题(2016A03008-2-3);中国科学院科技服务网络计划(STS)区域重点项目(KFJ-STS-QYZD-062);国家自然科学基金项目(31971731)

Numerical simulation of water and salt migration in desert soil in the lower reaches of Tarim River under salt-water irrigation

Expand
  • 1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2. Mosuowan Desert Research Station, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Shihezi 832000, Xinjiang, China
    3. Taklimakan Desert Research Station, Xinjiang Institute of Ecology and Geography Chinese Academy of Sciences, Korla 841000, Xinjiang, China
    4. University of Chinese Academy of Sciences, Beijing 100049, China
    5. Ludong University, Yantai 264039, Shandong, China

Received date: 2020-04-01

  Revised date: 2020-06-11

  Online published: 2021-08-02

摘要

在塔里木河下游沙漠地区防护林建设过程中,地下咸水灌溉条件下土壤剖面水盐变化明显,且存在一定的规律性。为掌握土壤垂向水盐动态,建立数值模型是十分高效的手段,通过重建土壤剖面的水盐动态过程,可揭示高盐环境下土壤水盐运移规律,服务防护林生态工程建设和后续可持续灌溉管理。通过HYDRUS-1D模拟防护林建设初期不同矿化度地下水灌溉条件下土壤水盐分布特征和时间变化,并根据实测的土壤水盐数据,优化土壤水分特征参数,评价模型的适用性。结果表明:表层(0~30 cm)土壤含水量和含盐量受灌溉影响大,数值波动剧烈,且土壤盐分表聚强烈;深层(50~150 cm)则受灌溉的影响小,数值波动小。数值模型模拟值与实测值吻合,能较好地反映土壤水盐运移情况,建立的模型可用于模拟不同矿化度灌溉条件下塔里木河下游流动沙漠地区土壤水盐运移状况,为该地区生态防护林建设提供理论基础和技术支撑。

本文引用格式

王世明,范敬龙,赵英,张涛涛,李生宇 . 咸水灌溉条件下塔里木河下游沙漠土壤水盐运移数值模拟[J]. 干旱区地理, 2021 , 44(4) : 1104 -1113 . DOI: 10.12118/j.issn.1000–6060.2021.04.22

Abstract

During shelterbelt construction in the lower reaches of Tarim River, Xinjiang, China, the water and salt balance of the soil profile clearly changed because of underground saltwater irrigation. Establishing a numerical model is a very efficient means of understanding the vertical water and salt dynamics of soil. By reconstructing the dynamic process of water and salt in the soil profile, the regularity of soil water and salt migration in a high-salt environment can be revealed, which would be useful for the construction of shelterbelts in ecological engineering projects and sustainable management of the subsequent irrigation. In this study, the distribution characteristics and temporal changes of the soil water and salt under different salinity conditions for groundwater irrigation in the early construction stages of the HYDRUS-1D shelter forest were simulated. Soil water and salt data were collected for optimization of the soil water characteristic parameters, and the applicability of the established numerical model was evaluated. The results showed that the water and salt contents of the surface soil (0-30 cm depth) were greatly affected by irrigation with large fluctuations. Additionally, the salt content was highly concentrated at the soil surface. In the deep layer (50-150 cm), irrigation had a small influence with small fluctuations in values. The simulated values of the numerical model were in good agreement with the measured values, which demonstrated that the model could reflect the soil water and salt migration at the test site. The established model can be used to simulate the soil water and salt migration in the desert area downstream of Tarim River under different salinity conditions for irrigation and provides a theoretical basis and technical support for the construction of an ecological shelterbelt in this area. Using the HYDRUS numerical simulation method effectively reduces the research costs of accurately predicting future changes in the soil water and salt environment, and it can also play an effective auxiliary role in research on other soil processes. This experiment was conducted in a desert environment, and few experimental studies have been performed in similar environments. Hence, this study is innovative and can provide new ideas and methods for experimental studies in relevant desert environments.

参考文献

[1] 樊自立, 徐海量, 傅荩仪, 等. 塔里木河下游生态保护目标和措施[J]. 中国沙漠, 2013, 33(4):1191-1197.
[1] [ Fan Zili, Xu Hailiang, Fu Jinyi, et al. Ecological protection objects and restoration measures in the lower reaches of Tarim River[J]. Journal of Desert Research, 2013, 33(4):1191-1197. ]
[2] Chen Yaning, Li Weihong, Xu Changchun, et al. Desert riparian vegetation and groundwater in the lower reaches of the Tarim River Basin[J]. Environmental Earth Sciences, 2015, 73(2):547-558.
[3] 马学喜, 李生宇, 徐新文, 等. 咸水灌溉对三种柽柳幼苗成活和生长状况的影响[J]. 干旱区资源与环境, 2016, 30(1):185-190.
[3] [ Ma Xuexi, Li Shengyu, Xu Xinwen, et al. Effects of different mineralized irrigation water on seedling survival and growth of three species of Tamarix in Taklimakan Desert[J]. Journal of Arid Land Resources and Environment, 2016, 30(1):185-190. ]
[4] 朱金方, 夏江宝, 陆兆华, 等. 盐旱交叉胁迫对柽柳幼苗生长及生理生化特性的影响[J]. 西北植物学报, 2012, 32(1):124-130.
[4] [ Zhu Jinfang, Xia Jiangbao, Lu Zhaohua, et al. Growth physiological and biochemical characteristics of Tamarix chinensis seedlings under salt-drought intercross stress[J]. Acta Botanica Boreal-Occidentalia Sinica, 2012, 32(1):124-130. ]
[5] 廖岩, 彭友贵, 陈桂珠. 植物耐盐性机理研究进展[J]. 生态学报, 2007, 27(5):2077-2089.
[5] [ Liao Yan, Peng Yougui, Chen Guizhu. Research advances in plant salt-tolerance mechanism[J]. Acta Ecologica Sinica, 2007, 27(5):2077-2089. ]
[6] Moreno F, Cabrera F, Fernandez-boy E, et al. Irrigation with saline water in the reclaimed marsh soils of south-west Spain: Impact on soil properties and cotton and sugar beet crops[J]. Agricultural Water Management, 2001, 48(2):133-150.
[7] 李发永, 王兴鹏, 林杰, 等. 不同矿化度的微咸水滴灌对红枣根区土壤碱解氮的影响[J]. 干旱区研究, 2013, 30(3):424-429.
[7] [ Li Fayong, Wang Xingpeng, Lin Jie, et al. Effect of drip irrigation with brackish water with different salinities on soil alkali-hydrolyzable nitrogen content in rhizosphere of Ziziphus jujuba trees[J]. Arid Zone Research, 2013, 30(3):424-429. ]
[8] 王利界, 周智彬, 常青, 等. 盐旱交叉胁迫对灰胡杨(Populus pruinosa)幼苗生长和生理生化特性的影响[J]. 生态学报, 2018, 38(19):7026-7033.
[8] [ Wang LiJie, Zhou Zhibin, Chang Qing, et al. Growth, physiological and biochemical characteristics of Populus pruinosa seedlings under salt-drought stress[J]. Acta Ecologica Sinica, 2018, 38(19):7026-7033. ]
[9] 薛新伟, 杨恒山, 张瑞富, 等. 滴灌对半干旱地区土壤水盐运动和次生盐渍化影响的研究进展[J]. 中国农学通报, 2019, 35(32):89-94.
[9] [ Xue Xinwei, Yang Hengshan, Zhang Ruifu, et al. Effects of drip irrigation on soil water and salt movement and secondary salinization in semi-arid areas: Research progress[J]. Chinese Agricultural Science Bulletin, 2019, 35(32):89-94. ]
[10] 窦凯歌, 王永东, 雷加强, 等. 咸水滴灌下塔里木沙漠公路防护林土壤盐分分布特征分析[J]. 干旱区地理, 2015, 38(3):576-584.
[10] [ Dou Kaige, Wang Yongdong, Lei Jiaqiang, et al. Salt distribution characteristics of Taklimakan Desert highway shelterbelt under saline water drip-irrigation[J]. Arid Land Geography, 2015, 38(3):576-584. ]
[11] 李丙文. 塔里木沙漠公路防护林咸水灌溉水盐调控机理研究[D]. 北京: 北京林业大学, 2010.
[11] [ Li Bingwen. Mechnism of water-salt regulation for the shelterbelts with saline water irrigation along the Tarim Desert Highway[D]. Beijing: Beijing Forestry University, 2010. ]
[12] Simunek J, Van Genuchten M T, Sejna M. The HYDRUS-1D solfware package for simulating the one-dimensional movement of water, heat, and multiple solutes in variably-saturated media[J]. University of California-Riverside Research Reports, 2005(3):1-240.
[13] 李冰冰, 王云强, 李志. HYDRUS-1D模型模拟渭北旱塬深剖面土壤水分的适用性[J]. 应用生态学报, 2019, 30(2):398-404.
[13] [ Li Bingbing, Wang Yunqiang, Li Zhi. Applicability of HYDRUS-1D model in simulating the soil moisture in deep profiles on the Weibei rainfed highland[J]. Chinese Journal of Applied Ecology, 2019, 30(2):398-404. ]
[14] 何康康, 杨艳敏, 杨永辉. 基于HYDRUS-1D模型的华北低平原区不同微咸水利用模式下土壤水盐运移的模拟[J]. 中国生态农业学报, 2016, 24(8):1059-1070.
[14] [ He Kangkang, Yang Yanmin, Yang Yonghui. HYDRUS-1D model simulation of soil water and salt movement under various brackish water use schemes in the North China Lowplain[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8):1059-1070. ]
[15] 余根坚, 黄介生, 高占义. 基于HYDRUS模型不同灌水模式下土壤水盐运移模拟[J]. 水利学报, 2013, 44(7):826-834.
[15] [ Yu Genjian, Huang Jiesheng, Gao Zhanyi. Study on water and salt transportation of different irrigation modes by the simulation of HYDRUS model[J]. Journal of Hydraulic Engineering, 2013, 44(7):826-834. ]
[16] 李开明, 刘洪光, 石培君, 等. 明沟排水条件下的土壤水盐运移模拟[J]. 干旱区研究, 2018, 35(6):1299-1307.
[16] [ Li Kaiming, Liu Hongguang, Shi Peijun, et al. Simulation of soil water and salt migration under open-ditch drainage[J]. Arid Zone Research, 2018, 35(6):1299-1307. ]
[17] 曹巧红, 龚元石. 应用Hydrus-1D模型模拟分析冬小麦农田水分氮素运移特征[J]. 植物营养与肥料学报, 2003(2):139-145.
[17] [ Cao Qiaohong, Gong Yuanshi. Simulation and analysis of water balance and nitrogen leaching using Hydrus-1D under winter wheat crop[J]. Plant Nutrition and Fertilizer Science, 2003(2):139-145. ]
[18] 周宏, 赵文智. 荒漠区包气带土壤物理特征及其对地下水毛管上升影响的模拟[J]. 应用生态学报, 2019, 30(9):2999-3009.
[18] [ Zhou Hong, Zhao Wenzhi. Soil physical characteristics of shallow vadose zone and modeling its effects on upward capillary rise of groundwater in an arid-desert area[J]. Chinese Journal of Applied Ecology, 2019, 30(9):2999-3009. ]
[19] 郑博文, 胡顺军, 周智彬, 等. 古尔班通古特沙漠南缘风沙土土壤水分特征与毛管水最大上升高度[J]. 干旱区地理, 2020, 43(4):1059-1066.
[19] [ Zheng Bowen, Hu Shunjun, Zhou Zhibin, et al. Maximum height of capillary rising water and characteristic of soil moisture in the southern edge of Gurbantunggut Desert[J]. Arid Land Geography, 2020, 43(4):1059-1066. ]
[20] Grinevskii S O. Modeling root water uptake when calculating unsaturated flow in the vadose zone and groundwater recharge[J]. Moscow University Geology Bulletin, 2011, 66(3):189-201.
[21] 侯裕生, 王振华, 李文昊, 等. 水肥耦合对极端干旱区滴灌葡萄耗水规律及作物系数影响[J]. 水土保持学报, 2019, 33(2):279-286, 330.
[21] [ Hou Yusheng, Wang Zhenhua, Li Wenhao, et al. Effects of water and fertilizer coupling on water consumption and crop coefficient of drip irrigated grape in extreme arid area[J]. Journal of Soil and Water Conservation, 2019, 33(2):279-286, 330. ]
[22] 陈胜楠, 孔喆, 陈立欣, 等. 半干旱区城市环境下油松林分蒸腾特征及其影响因子[J]. 生态学报, 2020, 40(4):1269-1280.
[22] [ Chen Shengnan, Kong Zhe, Chen Lixin, et al. The stand transpiration characteristics of Pinus tabulaeformis and its influential factors in a semi-arid urban environment[J]. Acta Ecologica Sinica, 2020, 40(4):1269-1280. ]
[23] 丁新原, 周智彬, 徐新文, 等. 咸水滴灌下塔克拉玛干沙漠腹地人工防护林土壤水盐动态[J]. 土壤学报, 2016, 53(1):103-116.
[23] [ Ding Xinyuan, Zhou Zhibin, Xu Xinwen, et al. Dynamics of soil water and salt in soil under artificial plantation shelterbelt drip-irrigated with saline water in the center of the Taklimakan Desert[J]. Acta Pedologica Sinica, 2016, 53(1):103-116. ]
[24] 周智彬, 李培军, 徐新文, 等. 塔克拉玛干沙漠腹地人工绿地对沙地盐分时空分布的影响[J]. 水土保持学报, 2002, 16(2):16-19.
[24] [ Zhou Zhibin, Li Peijun, Xu Xinwen, et al. Effect of artificial green belt on salt distribution in sand land in hinterland of Taklimakan Desert[J]. Journal of Soil and Water Conservation, 2002, 16(2):16-19. ]
[25] 李亮, 史海滨, 贾锦凤, 等. 内蒙古河套灌区荒地水盐运移规律模拟[J]. 农业工程学报, 2010, 26(1):31-35.
[25] [ Li Liang, Shi Haibin, Jia Jinfeng, et al. Simulation of water and salt transport of uncultivated land in Hetao Irrigation District in Inner Mongolia[J]. Transactions of the CSAE, 2010, 26(1):31-35. ]
[26] 石培君, 刘洪光, 何新林, 等. 基于HYDRUS模型的暗管排水水盐运移模拟[J]. 干旱地区农业研究, 2019, 37(3):224-231.
[26] [ Shi Peijun, Liu Hongguang, He Xinlin, et al. The simulation of water and salt transportation under subsurface drainage by HYDRUS model[J]. Agricultural Research in the Arid Areas, 2019, 37(3):224-231. ]
[27] 李会杰, 易军, 赵英, 等. 浅层地下水对玉米根区水分及根系吸水影响的数值模拟[J]. 灌溉排水学报, 2015, 34(11):35-38, 46.
[27] [ Li Huijie, Yi Jun, Zhao Ying, et al. Effects of shallow groundwater table on root zone and root water uptake of maize using numerical model[J]. Journal of Irrigation and Drainage, 2015, 34(11):35-38, 46. ]
[28] 王在敏, 何雨江, 靳孟贵, 等. 运用土壤水盐运移模型优化棉花微咸水膜下滴灌制度[J]. 农业工程学报, 2012, 28(17):63-70.
[28] [ Wang Zaimin, He Yujiang, Jin Menggui, et al. Optimization of mulched drip-irrigation with brackish water for cotton using soil-water-salt numerical simulation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(17):63-70. ]
文章导航

/