气候与水文

基于最优训练期的PP与MOS的风电功率趋势预报对比

展开
  • 1.陕西省气象服务中心,陕西 西安 710014
    2.秦岭和黄土高原生态环境气象重点实验室,陕西 西安 710014
    3.国华投资陕西分公司,陕西 榆林 719000
王丹(1986-),女,硕士,高级工程师,主要从事数值预报应用研究和气象服务工作. E-mail: dandan-w@live.cn

收稿日期: 2019-11-27

  修回日期: 2020-12-15

  网络出版日期: 2021-06-01

基金资助

陕西省自然科学基金项目(2019JM-342);陕西省气象局秦岭和黄土高原生态环境气象重点实验室开放研究课题基金(2020Y-2);陕西省气象服务中心“能源气象服务技术研发创新团队”

Comparative study of wind power trend forecast by using methods of PP and MOS with optimal training period

Expand
  • 1. Shaan’xi Meteological Service Center, Xi’an 710014, Shaanxi, China
    2. Key Laboratory of Eco-Environment and Meteorology for The Qinling Mountains and Loess Plateau, Shaanxi Meteorological Bureau, Xi’an 710014, Shaanxi, China
    3. Guohua Energy Investment Co., Ltd. (Shaanxi Branch), Yulin 719000, Shaanxi, China

Received date: 2019-11-27

  Revised date: 2020-12-15

  Online published: 2021-06-01

摘要

利用某一风电场区域内33台风机观测资料以及欧洲中期天气预报中心(ECMWF)的100 m高度风速预报产品,引进最优训练期方案,通过一元线性回归方法先对模式的100 m高度风速预报进行订正,再分别采用完全预报方法(PP法)和模式输出统计预报方法(MOS法)进行风电功率预报的对比研究。结果表明:ECMWF的100 m高度风速预报值与风机轮毂高度处风速观测值之间的偏差并不大,订正后的预报误差进一步减小。将订正后的风速预报代入PP法和MOS法建立的风电功率预报方程,可以显著减小PP法的预报误差,但是并没有改进MOS法的预报结果。与利用风速预报订正产品进行风电功率预报的PP法相比,MOS法可以省去风速预报的订正环节而略胜一筹,简化了业务流程。这2种方法计算的33台风机站3~72 h预报的均方根误差和平均绝对误差分别在17%~25%和11%~18%之间,具有业务应用价值。

本文引用格式

王丹,高红燕,杨艳超,李博,屈直,浩宇 . 基于最优训练期的PP与MOS的风电功率趋势预报对比[J]. 干旱区地理, 2021 , 44(3) : 819 -829 . DOI: 10.12118/j.issn.1000–6060.2021.03.24

Abstract

On the basis of data sets of wind speed and wind power observed from 33 wind turbines in a wind farm in Shaanxi Province, China and with wind speeds at a height of 100 m forecast by the ECMWF model, the wind speed prediction was corrected using simple linear regression and introducing the optimal training period and forecast models for wind power business were comparatively studied using the perfect prognostic (PP) and model output statistics (MOS) methods. The optimal training period was defined as a sliding cycle, which should be given before the forecast date. For training days varying from 10 to 100 d, taking some past forecast days as an evaluation period to calculate the root-mean-square error (RMSE) of the forecast, the optimal training period was decided according to the variation of the RMSE of the wind speed or wind power forecast with the training days. A prediction equation of wind power was established using the PP method according to historical observations of wind speed and wind power in the training sample. Then, the numerical prediction product of wind speed was used to replace the observation data in the prediction equation, which was applied to a wind power prediction business. In contrast, the MOS method directly used the wind speed of the numerical weather prediction model to establish the prediction equation, which was quite different from the PP method. The result showed that wind speed predictions after correction and wind power were improved during the optimal training period, reducing the prediction error to the greatest extent. The optimal training days were determined by the RMSE of the forecast during the evaluation period of 10 d before the forecast date. The wind speed at a height of 100 m forecast by the ECMWF model was closer to that of the observation at the height of the fan hub, and the RMSE and average absolute error (ABE) respectively ranged from 2.5 to 4.1 m·s-1 and 1.9 to 3.3 m·s-1. The prediction error of the wind speed after correction became smaller, with the percentage of improvement in the RMSE of the wind speed forecast ranging from 33% to 46%, and the RMSE and ABE of the wind speed prediction respectively ranged from 1.5 to 2.4 m·s-1 and 1.1 to 1.9 m·s-1. Thus, wind speed predictions could be applied to wind power prediction businesses using both the PP and MOS methods. Although the wind power prediction error of the MOS method was nearly the same as that of the PP method when the wind speed prediction was corrected, the MOS method, which did not need to improve the quality of wind power prediction by correcting the wind speed prediction, was slightly better than the PP method in terms of complexity. The RMSE and ABE of the wind power forecasts of both the PP and MOS methods were 17%-25% and 11%-18%, respectively, within the forecast time of 3-72 h. Thus, both the PP and MOS methods could be applied to wind power prediction businesses.

参考文献

[1] 刘全根. 国家能源结构调整的战略选择加强可再生能源开发利用[J]. 地球科学进展, 2000,15(2):154-164.
[1] [ Liu Quangen. Strategic choice for national adjustment of energy structure[J]. Advance in Earth Sciences, 2000,15(2):154-164. ]
[2] 韩爽. 风电场功率短期预测方法研究[D]. 北京: 华北电力大学, 2008.
[2] [ Han Shuang. Study of short-term wind power prediction method[D]. Beijing: North China Electric Power University, 2008. ]
[3] 董广涛, 穆海振, 周伟东, 等. 基于气象数值模式的风电功率预测系统[J]. 太阳能学报, 2012,33(5):776-781.
[3] [ Dong Guangtao, Mu Haizhen, Zhou Weidong, et al. A wind-power forecast system based on the meteorological model[J]. Acta Energlae Solaris Sinica, 2012,33(5):776-781. ]
[4] Alexadis M, Dokopoulos P, Sahsamanoglou H, et al. Short term forecasting of wind speed and related electrical power[J]. Solar Energy, 1998,63(1):61-68.
[5] 杨秀媛, 肖洋, 陈树勇. 风电场风速和发电功率预测研究[J]. 中国电机工程学报, 2005,25(11):1-5.
[5] [ Yang Xiuyuan, Xiao Yang, Chen Shuyong. Wind speed and generated power forecasting in wind farm[J]. Proceedings of the CSEE, 2005,25(11):1-5. ]
[6] 黄磊. 基于动态神经网络的风电场输出功率预测及其应用的研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
[6] [ Huang Lei. Research on wind farm output forecasting using dynamic neural new works and application[D]. Harbin: Harbin Institute of Technology, 2011. ]
[7] 李京龙, 武胜利, 葛欢欢, 等. 1962—2016年阿勒泰地区风速变化分析[J]. 干旱区地理, 2018,41(3):499-507.
[7] [ Li Jinglong, Wu Shengli, Ge Huanhuan, et al. Wind speed change in Altay Prefecture from 1962 to 2016[J]. Arid Land Geography, 2018,41(3):499-507. ]
[8] 曹永强, 郭明, 刘思然, 等. 近55 a辽宁省风速时空变化特征分析[J]. 干旱区地理, 2018,41(1):1-8.
[8] [ Cao Yongqiang, Guo Ming, Liu Siran, et al. Temporal and spatial variation characteristics of wind speed in Liaoning Province in recent 55 years[J]. Arid Land Geography, 2018,41(1):1-8. ]
[9] 袁莹莹, 殷水清, 谢云, 等. 我国风蚀区风速日变率时空变化特征[J]. 干旱区地理, 2018,41(3):480-487.
[9] [ Yuan Yingying, Yin Shuiqing, Xie Yun, et al. Temporal and spatial characteristics of diurnal variations of wind speed in wind erosion areas over China[J]. Arid Land Geography, 2018,41(3):480-487. ]
[10] 柳艳香, 陶树旺, 张秀芝. 风能预报方法研究进展[J]. 气候变化研究进展, 2008,4(4):209-214.
[10] [ Liu Yanxiang, Tao Shuwang, Zhang Xiuzhi. Review on methods of wind power forecasting[J]. Advances in Climate Change, 2008,4(4):209-214. ]
[11] 张铁军, 颜鹏程, 张正英, 等. 多种订正技术在风电场风速预报订正中的应用[J]. 干旱气象, 2018,36(5):835-844.
[11] [ Zhang Tiejun, Yan Pengcheng, Zhang Zhengying, et al. Application of various technologies in modification of wind speed forecast in wind farms[J]. Journal of Arid Meteorology, 2018,36(5):835-844. ]
[12] 孙川永. 风电场风电功率短期预报技术研究[D]. 兰州: 兰州大学, 2009.
[12] [ Sun Chuanyong. A study on the technique of short-term forecast of wind power at wind farm[D]. Lanzhou: Lanzhou University, 2009. ]
[13] 石岚, 徐丽娜, 郝玉珠. 基于风速高相关分区的风电场风速预报订正[J]. 应用气象学报, 2016,27(4):506-512.
[13] [ Shi Lan, Xu Lina, Hao Yuzhu. The correction of forecast wind speed in a wind farm based on partitioning of the high correlation of wind speed[J]. Quarterly Journal of Applied Meteorology, 2016,27(4):506-512. ]
[14] 邓小花, 翟盘茂, 袁春红. 国外几套再分析资料的对比与分析[J]. 气象科技, 2010,38(1):1-8.
[14] [ Deng Xiaohua, Zhai Panmao, Yuan Chunhong. Comparative analysis of NCEP/NCAR, ECMWF and JMA reanalysis[J]. Meteorological Science and Technology, 2010,38(1):1-8. ]
[15] 张飞民. WRF-3DVAR对近地层风速预报改进的数值试验[D]. 兰州: 兰州大学, 2014.
[15] [ Zhang Feimin. The improvement experiments on near surface wind forecasting with WRF-3DAR[D]. Lanzhou: Lanzhou University, 2009. ]
[16] 丁煌, 陶树旺, 肖子牛, 等. 基于WRF和 SVM方法的风电场功率预报技术研究[J]. 高原气象, 2013,32(2):581-587.
[16] [ Ding Huang, Tao Shuwang, Xiao Ziniu, et al. Study on wind power forecasting of wind farm based on WRF and SVM[J]. Plateau Meteorology, 2013,32(2):581-587. ]
[17] 王建成, 杨苹, 杨曦. 基于数值天气预报的风电功率预测建模研究[J]. 可再生能源, 2013,31(2):34-38.
[17] [ Wang Jiancheng, Yang Ping, Yang Xi. Research on wind power prediction modeling based on numerical weather prediction[J]. Renewable Energy Resources, 2013,31(2):34-38. ]
[18] 杨程, 姜瑜君, 余贞寿, 等. 基于偏最小二乘回归的区域换式风速预报订正技术研究[J]. 气象, 2019,45(5):676-684.
[18] [ Yang Cheng, Jiang Yujun, Yu Zhenshou, et al. Correction technology of regional wind speed forecasting based on partial least square regression[J]. Meteorological Monthly, 2019,45(5):676-684. ]
[19] 徐晶晶, 胡非, 肖子牛, 等. 风能模式预报的相似误差订正[J]. 应用气象学报, 2013,24(6):731-740.
[19] [ Xu Jingjing, Hu Fei, Xiao Ziniu, et al. Analog bias correction of numerical model on wind power prediction[J]. Quarterly Journal of Applied Meteorology, 2013,24(6):731-740. ]
[20] 王丹, 王建鹏, 白庆梅, 等. 递减平均法与一元线性回归法对ECMWF温度预报订正能力对比[J]. 气象, 2019,45(9):1310-1321.
[20] [ Wang Dan, Wang Jianpeng, Bai Qingmei, et al. Comparative correction of air temperature forecast from ECMWF model by the decaying averaging and the simple linear regression methods[J]. Meteorological Monthly, 2019,45(9):1310-1321. ]
[21] 王丹, 王建鹏, 娄盼星, 等. ECMWF高分辨率模式对陕西2017年7月高温预报的检验及订正[J]. 干旱区地理, 2019,42(1):38-46.
[21] [ Wang Dan, Wang Jianpeng, Lou Panxing, et al. Evaluation and correction of high temperature weather forecast in Shaanxi Province in July 2017 using ECMWF high-resolution model[J]. Arid Land Geography, 2019,42(1):38-46. ]
[22] 彭婷, 智协飞, 董颜, 等. 基于贝叶斯模式平均方法的东亚地区地面2 m气温预报改进[J]. 中国科技论文, 2019,14(5):575-581.
[22] [ Peng Ting, Zhi Xiefei, Dong Yan, et al. Forecast improving of 2-meter surface air temperature in East Asia based on Bayesian model averaging[J]. China Science Paper, 2019,14(5):575-581. ]
[23] 吴启树, 韩美, 郭弘, 等. MOS温度预报中最优训练期方案[J]. 应用气象学报, 2016,27(4):426-434.
[23] [ Wu Qishu, Han Mei, Guo Hong, et al. The optimal training period scheme of MOS temperature forecast[J]. Journal of Applied Meteorological Science, 2016,27(4):426-434. ]
[24] 黄嘉佑, 李庆祥. 气象数据统计分析方法[M]. 北京: 气象出版社, 2015.
[24] [ Huang Jiayou, Li Qingxiang. Methods for statistical analysis of meteorological data[M]. Beijing: China Meteorological Press, 2015. ]
[25] 龙柯吉, 师春香, 韩帅, 等. 中国区域高分辨率温度实况融合格点分析产品质量评估[J]. 高原山地气象研究, 2019,39(3):67-74.
[25] [ Long Keji, Shi Chunxiang, Han Shuai, et al. Quality assessment of high resolution temperature merged grid analysis product in China[D]. Plateau and Mountain Meteorology Research, 2019,39(3):67-74. ]
[26] 薛海乐. 使用过去资料改进GRAPES全球预报的理论和方法研究[D]. 兰州: 兰州大学, 2013.
[26] [ Xue Haile. A theoretical and methodology research of GRAPES-global improvement in numerical weather prediction using the past data[D]. Lanzhou: Lanzhou University, 2009. ]
[27] 徐枝芳, 龚建东, 王建捷, 等. 复杂地形下地面观测资料同化I.模式地形与观测站地形高度差异对地面资料同化的影响研究[J]. 大气科学, 2007,31(2):222-232.
[27] [ Xu Zhifang, Gong Jiandong, Wang Jianjie, et al. A study of assimilation of surface observational data in complex terrain part I: Influence of the elevation difference between model surface and observation site[J]. Chinese Journal of Atmospheric Sciences, 2007,31(2):222-232. ]
文章导航

/