气候与水文

GPM卫星降水数据的降尺度研究——以陕西省为例

展开
  • 1.西北大学,陕西 西安 710127
    2.中国电子科技集团公司第二十研究所,陕西 西安 710000
温伯清(1990-),男,博士,主要从事GIS空间分析研究. E-mail: BoqWen@163.com

收稿日期: 2020-08-21

  修回日期: 2021-02-05

  网络出版日期: 2021-06-01

基金资助

国家自然科学青年基金(41601290)

Downscaling study of GPM satellite precipitation data: A case study of Shaanxi Province

Expand
  • 1. Northwest University, Xi’an 710127, Shaanxi, China
    2. The 20th Research Institute of China Electronics Technology Group, Xi’an 710000, Shaanxi, China

Received date: 2020-08-21

  Revised date: 2021-02-05

  Online published: 2021-06-01

摘要

以陕西省内2019年33个地面气象观测站点的测量数据为真实值,选取相关系数(CC)、均方根误差(RMSE)以及相对误差(BIAS)等多种统计分析指标对GPM(Global precipitation measurement)卫星降水数据进行精度验证,并引入地形因子作为空间参考要素,基于地理加权回归模型(GWR)对GPM降水数据进行降尺度研究。结果表明:(1) 在年际尺度上,GPM降水数据与实测降水数据之间有着明显的相关性,相关性较好(CC=0.89),相对误差则较低(BIAS=-0.45);(2) 在季节尺度上,春、夏两季GPM降水数据的降尺度结果与实测降水数据之间的CC值分别为0.92和0.80,而秋季则为0.93;(3) 降尺度降水量结果与高程呈现出明显的负相关性,随着海拔升高,降水相对减少。总体而言,GWR降尺度降水数据在陕西省内有着较好的精度,能够较为准确地反映陕西省内的降水分布。

本文引用格式

温伯清,刘戎,庞国伟,张泉 . GPM卫星降水数据的降尺度研究——以陕西省为例[J]. 干旱区地理, 2021 , 44(3) : 786 -795 . DOI: 10.12118/j.issn.1000–6060.2021.03.21

Abstract

The downscaling of precipitation based on the geographically weighted regression (GWR) model provides precipitation data with higher spatial resolution, making the spatial scale of precipitation estimation more refined, which is of great importance to regional hydrology and water resources management. Shaanxi Province is located in the central and western region of China, blocked by the Qinling Mountains and Loess Plateau, and exhibits significant regional climate differences. Therefore, the evaluation of the spatial and temporal patterns of precipitation in Shaanxi Province is essential. In this study, the Shaanxi Province was selected as the study area and the precipitation data from ground meteorological observation stations as the real values to verify the accuracy of Global precipitation measurement (GPM) precipitation data from the time scale of the year and spatial scale of the stations. The GWR model was used to downscale the GPM and compare and verify it with the measured precipitation data. Simultaneously, based on the downscaling method of annual precipitation data, the monthly scale was further extended to obtain higher resolution GPM monthly precipitation data and the influence degree of topography on the accuracy of satellite precipitation products was analyzed by combining the digital elevation model (DEM) data. Moreover, the correlation coefficient (CC), root mean square error (RMSE), and relative error (BIAS) were selected to verify the GPM precipitation data accuracy in the Shaanxi Province. Additionally, the GWR model was used to downscale the GPM precipitation data. DEM data were resampled to the same resolution as GPM data. At the same time, the GPM and DEM data under the resolution of 0.1°×0.1° were used as input elements to construct the GWR model and the constant term, DEM coefficient term, and residual of each grid center point were extracted from the regression model. The constant term and coefficient term were rasterized to obtain 1 km data, and the residual was interpolated to the spatial resolution of 1 km×1 km using the ordinary Kriging method. The GPM precipitation data with a spatial resolution of 1 km was calculated and the results show that: (1) The GPM satellite precipitation data demonstrated a good accuracy on the spatial and temporal scales of annual and station, and exhibited certain adaptability in the study region. The downscaling study of GPM precipitation data using the GWR model could greatly improve the spatial resolution of precipitation data, demonstrating a stronger ability to display spatial details. (2) The GWR downscaling results showed a good correlation between the observed precipitation data, CC=0.90 at year scale. The GPM precipitation data of spring and summer between downscaling results and the measured rainfall data of CC values were 0.92 and 0.80, respectively at seasonal scale. In the autumn of 0.93, the month scale correlation was also generally higher and showed better accuracy, meeting the needs of actual precipitation research data. On the whole, however, the GWR downscaling result was higher than the original precipitation data of GPM. (3) The results of downscaling precipitation showed a significant negative correlation with elevation. As the altitude increased, the precipitation decreased. Therefore, the GWR downscaling model was satisfactorily applied to the downscaling study of GPM precipitation data in the Shaanxi Province, which improved the spatial resolution of the data. This study can provide important data for hydrological research and improve the simulation accuracy.

参考文献

[1] Chen C, Zhao S, Duan Z, et al. An improved spatial downscaling procedure for TRMM 3B43 precipitation product using geographically weighted regression[J]. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 2015,8(9):4592-4604.
[2] 田亚林, 李雪梅, 李珍, 等. 1980—2017年天山山区不同降水形态的时空变化[J]. 干旱区地理, 2020,43(2):308-318.
[2] [ Tian Yalin, Li Xuemei, Li Zhen, et al. Spatial and temporal variations of different precipitation types in the Tianshan Mountains from 1980 to 2017[J]. Arid Land Geography, 2020,43(2):308-318. ]
[3] Kubota T, Shige S, Hashizume H, et al. Global precipitation map using satellite-borne microwave radiometers by the GSMaP project: Production and validation[J] IEEE Transactions on Geoscience and Remote Sensing, 2007,45(7):2259-2275.
[4] Huffman G J, Robert F A, David T B, et al. The TRMM multi-satellite precipitation analysis TMPA: Quasi-global precipitation estimates at fine scales[R]. NTRS-NASA Technical Reports Server, 2006.
[5] 张鹏举, 江善虎, 陈宏新, 等. TRMM卫星降水数据在淮河息县流域径流模拟的适用性[J] 水资源研究. 2017,6(2):148-155.
[5] [ Zhang Pengju, Jiang Shanhu, Chen Hongxin, et al. Hydrological simulation capability of TRMM satellite precipitation data in Xixian catchment, Huai River Basin[J]. Journal of Water Resources Research, 2017,6(2):148-155. ]
[6] Smith E A, Ghassem A, Yoji F, et al. International global precipitation measurement (GPM) program and mission: An overview[J]. Measuring Precipitation from Space, 2007,28:611-653.
[7] Hou Arthur Y, Ramesh K K, Steven N, et al. The global precipitation measurement mission[J]. Bulletin of the American Meteorological Society, 2013,95(5):701-722.
[8] Xu S G, Wu C Y, Li W, et al. A new satellite-based monthly precipitation downscaling algorithm with non-stationary relationship between precipitation and land surface characteristics[J]. Remote Sensing of Environment, 2015,162:119-140.
[9] Jia S F, Zhu W B, Lü A F, et al. A statistical spatial downscaling algorithm of TRMM precipitation based on NDVI and DEM in the Qaidam Basin of China[J]. Remote Sensing of Environment, 2011,115(12):3069-3079.
[10] 刘小婵, 张洪岩, 赵建军, 等. 东北地区TRMM数据降尺度的GWR模型分析[J]. 地球信息科学学报, 2015,17(9):1055-1062.
[10] [ Liu Xiaochan, Zhang Hongyan, Zhao Jianjun, et al. Spatial downscaling of TRMM precipitation data based on GWR model in northeast China[J]. Journal of Geo-Information Science, 2015,17(9):1055-1062. ]
[11] 曾业隆, 谭伟, 王超, 等. 基于GWR模型的贵州喀斯特山区TRMM 3B43降水资料降尺度分析[J]. 干旱气象, 2018,36(3):405-414.
[11] [ Zeng Yelong, Tan Wei, Wang Chao, et al. Spatial downscaling of TRMM 3B43 precipitation data based on GWR model in Karst Mountainous area of Guizhou Province[J]. Journal of Arid Meteorology, 2018,36(3):405-414. ]
[12] 曾昭昭, 王晓峰, 任亮. 基于GWR模型的陕西秦巴山区TRMM降水数据降尺度研究[J]. 干旱区地理, 2017,40(1):26-36.
[12] [ Zeng Zhaozhao, Wang Xiaofeng, Ren Liang. Spatial downscaling of TRMM rainfall data based on GWR model for Qinling-Daba Mountains in Shaanxi Province[J]. Arid Land Geography, 2017,40(1):26-36. ]
[13] Duan S, Li Z L. Spatial downscaling of MODIS land surface temperatures using geographically weighted regression: Case study in northern China[J]. IEEE Transactions on Geoscience & Remote Sensing, 2016,54(11):6458-6469.
[14] Chen F R, Yu Li, Qiang L, et al. Spatial downscaling of TRMM 3B43 precipitation considering spatial heterogeneity[J]. International Journal of Remote Sensing, 2014,35(9):3074-3093.
[15] 胡实, 韩建, 占车生, 等. 太行山区遥感卫星反演降雨产品降尺度研究[J]. 地理研究, 2020,39(7):1680-1690.
[15] [ Hu Shi, Han Jian, Zhan Chesheng, et al. Spatial downscaling of remotely sensed precipitation in Taihang Mountains[J]. Geographical Research, 2020,39(7):1680-1690. ]
[16] Immerzeel W W, Rutten M M, Droogers P. Spatial downscaling of TRMM precipitation using vegetative response on the Iberian Peninsula[J]. Remote Sensing of Environment, 2009,113(2):362-370.
[17] Duan Z, Bastiaanssen W G M. First results from version 7 TRMM 3B43 precipitation product in combination with a new downscaling-calibration procedure[J]. Remote Sensing of Environment, 2013,113(131):1-13.
[18] 李净, 张晓. TRMM降水数据的空间降尺度方法研究[J]. 地理科学. 2015,35(9):1164-1169.
[18] [ Li Jing, Zhang Xiao. Downscaling method of TRMM satellite precipitation data[J]. Scientia Geographica Sinica, 2015,35(9):1164-1169. ]
[19] 金晓龙, 邵华, 张弛, 等. GPM卫星降水数据在天山山区的适用性分析[J]. 自然资源学报. 2016,31(12):2074-2085.
[19] [ Jin Xiaolong, Shao Hua, Zhang Chi, et al. The applicability evaluation of three satellite products in Tianshan Mountains[J]. Journal of Natural Resources, 2016,31(12):2074-2085. ]
[20] 董国涛, 樊东, 杨胜天, 等. GPM与TRMM降雨数据在黄河流域适用性分析[J]. 水土保持研究, 2018,25(3):81-87.
[20] [ Dong Guotao, Fan Dong, Yang Shengtian, et al. Analysis on the applicability of GPM and TRMM precipitation data in the Yellow River Basin[J]. Research of Soil and Water Conservation, 2018,25(3):81-87. ]
[21] Zhan C S, Han J, Shi H, et al. Spatial downscaling of GPM annual and monthly precipitation using regression-based algorithms in a mountainous area[J]. Advances in Meteorology, 2018,2018:1506017, doi: 10.1155/2018/1506017.
[22] 胡胜, 曹明明, 李婷, 等. 1957—2011年陕西省降水特征分析及趋势判断[J]. 西北大学学报(自然科学版), 2014,44(5):825-828.
[22] [ Hu Sheng, Cao Mingming, Li Ting, et al. Analysis of precipitation characteristics from 1957 to 2011 and judgement of precipitation trend in Shaanxi Province[J]. Journal of Northwest University(Natural Science Edition), 2014,44(5):825-828. ]
[23] 万相均, 任志远, 张翀. 陕西省气温与降水变化时空分布研究[J]. 干旱区资源与环境, 2013,27(6):140-147.
[23] [ Wan Xiangjun, Ren Zhiyuan, Zhang Chong. Research on spatial-temporal distribution of temperature and precipitation changes in Shaanxi Province[J]. Journal of Arid Land Resources and Environment, 2013,27(6):140-147. ]
[24] Brunsdon C, Fotheringham A S, Charlton M E. Geographically weighted regression: A method for exploring spatial nonstationarity[J]. Geographical Analysis, 1996,28(4):281-298.
[25] Basist A, Bellg G D, Meentemeyer V. Statistical relationships between topography and precipitation patterns[J]. Journal of Climate, 1994,7(9):1305-1315.
[26] 魏志明, 岳官印, 李家, 等. GPM与TRMM降水数据在海河流域的精度对比研究[J]. 水土保持通报, 2017,37(2):171-176.
[26] [ Wei Zhiming, Yue Guanyin, Li Jia, et al. Comparison study on accuracies of precipitation data using GPM and TRMM product in Haihe River Basin[J]. Bulletin of Soil and Water Conservation, 2017,37(2):171-176. ]
[27] 郭妍. 陕西省TRMM降水数据反演精度的时空分布特征研究[D]. 杨凌:西北农林科技大学, 2017.
[27] [ Guo Yan. Study on temporal and spatial distribution characteristics of inversion accuracy of TRMM precipitation data in Shaanxi Province[D]. Yangling: Northwest A&F University, 2017. ]
[28] 金辉明, 徐鹏, 何康, 等. 基于地理加权回归模型的省级TRMM降水数据降尺度研究[J]. 浙江水利水电学院学报, 2017,29(3):29-36.
[28] [ Jin Huiming, Xu Peng, He Kang, et al. Downscaling research of TRMM precipitation data based on GWR model in Zhejiang Province[J]. Journal of Zhejiang University of Water Resources and Electric Power, 2017,29(3):29-36. ]
[29] 嵇涛, 刘睿, 杨华, 等. 多源遥感数据的降水空间降尺度研究——以川渝地区为例[J]. 地球信息科学学报, 2015,17(1):108-117.
[29] [ Ji Tao, Liu Rui, Yang Hua, et al. Spatial downscaling of precipitation using multi-source remote sensing data: A case study of Sichuan-Chongqing Region[J]. Journal of Geo-information Science, 2015,17(1):108-117. ]
[30] 徐明, 石玉立, 王彬. 高分辨率青藏高原历史月降水数据重建[J]. 地理科学进展, 2018,37(7):923-932.
[30] [ Xu Ming, Shi Yuli, Wang Bin. Reconstruction of high-resolution monthly precipitation data of the Tibetan Plateau[J] Journal of Progress in Geography, 2018,37(7):923-932. ]
[31] 陈诚. TRMM 3B43遥感降水量产品数据定标与降尺度方法研究[D]. 南京: 南京大学, 2016.
[31] [ Chen Cheng. Research on TRMM 3B43 remote sensing precipitation product data calibration and scaling method[D]. Nanjing: Nanjing University, 2016. ]
[32] 刘世伟, 吴锦奎, 张文春, 等. 基于克里金插值估算区域降水量的抽样方法对比分析——以甘肃省为例[J]. 冰川冻土, 2015,37(3):650-657.
[32] [ Liu Shiwei, Wu Jinkui, Zhang Wenchun, et al. Comparison analysis of sampling methods to estimate the regional precipitation based on Kriging interpolation method: A case study in Gansu Province[J]. Journal of Glaciology and Geocryology, 2015,37(3):650-657. ]
[33] 刘闻, 曹明明, 宋进喜, 等. 陕西年降水量变化特征及周期分析[J]. 干旱区地理, 2013,36(5):865-874.
[33] [ Liu Wen, Cao Mingming, Song Jinxi, et al. Spatio-temporal distribution and temporal periodicity of annual precipitation in Shaanxi Province[J]. Arid Land Geography, 2013,36(5):865-874. ]
文章导航

/