塔里木河流域生态与环境

塔里木河下游胡杨根际土壤细菌群落多样性分析

展开
  • 石河子大学生命科学学院,新疆 石河子 832003
李媛媛(1996-),女,在读硕士研究生,主要从事植物生态研究. E-mail: 374597860@qq.com

收稿日期: 2021-02-04

  修回日期: 2021-02-27

  网络出版日期: 2021-06-01

基金资助

国家自然科学基金地区项目(31560177)

Bacterial communities diversity of Populus euphratica rhizospheric soil in the lower reaches of Tarim River

Expand
  • School of Life Sciences, Shihezi University, Shihezi 832003, Xinjiang, China

Received date: 2021-02-04

  Revised date: 2021-02-27

  Online published: 2021-06-01

摘要

采用高通量测序技术,对塔里木河下游不同生长时期(幼龄期、中壮期、过熟期、衰亡期)胡杨根际土壤细菌进行测序,结合典范对应分析(CCA)与Spearman相关性分析,探讨细菌群落组成与环境因子的相关性。结果表明:(1) 土壤样品共获得7287个操作分类单元(OTUs),经过对比鉴定共得到73门,165纲,339目,454科,651属和205种。(2) 胡杨根际土壤细菌群落丰富度和多样性随生长时期表现为先增加后降低的趋势,而不同生长时期间无显著差异。(3) 胡杨根际细菌群落主要的优势细菌门为变形菌门(Proteobacteria)、unidentified_Bacteria、Halobacterota,优势细菌属为海杆菌属(Marinobacter)、嗜盐单胞菌属(Halomonas)、Woeseia,相较于门分类学水平,细菌群落组成在属水平上存在较大差异,不同生长时期胡杨根际细菌群落的优势菌属不同。(4) 不同生长时期胡杨根际土壤细菌群落组成可分为两大类,中壮期与衰亡期的土壤样品聚为一类,幼龄期与过熟期的土壤样品聚为一类。(5) CCA分析表明土壤含水量、全钾、总盐、pH是显著影响胡杨根际土壤细菌群落组成的环境因子(P<0.05)。研究结果为丰富干旱区根际微生物的研究、探讨干旱区植物-微生物之间的相互作用提供科学依据。

本文引用格式

李媛媛,彭梦文,党寒利,姜梦,庄丽,李桂芳 . 塔里木河下游胡杨根际土壤细菌群落多样性分析[J]. 干旱区地理, 2021 , 44(3) : 750 -758 . DOI: 10.12118/j.issn.1000–6060.2021.03.17

Abstract

Rhizosphere bacteria play an essential role in promoting plant growth and protecting plant health. In this study, we use the high throughput sequencing to analyze rhizosphere bacteria at different developmental periods of Populus euphratica (the four periods are young, medium, overripe, and decline periods) in the lower reaches of Tarim River in Xinjiang, China. Canonical correspondence and Spearman correlation analyses were used to investigate the correlation between bacterial community and environmental factors. The results showed that (1) out of the soil samples collected from the soils under the four developmental periods of P. euphratica, 98028 effective sequences and 7287 operational taxonomic units (OTUs) were obtained, the OTUs numbers of the four periods were 3701, 4543, 4297, and 3710, respectively. From comparative identification, 73 phyla, 165 classes, 339 orders, 454 families, 651 genera, and 205 species were obtained with the development of P. euphratica. (2) Alpha diversity analysis showed that the bacterial community diversity was the highest at the overripe period (Shannon and Simpson index), the bacterial community abundance was the highest at the medium period (Chao1 and ACE index), the abundance and diversity of the rhizosphere bacterial community showed a trend of first increasing and then decreasing; however, there was no significant difference in bacterial abundance and diversity in rhizosphere soil at different developmental periods. (3) Proteobacteria, unidentified_Bacteria, and Halobacterota were the dominant bacteria at the phylum level in the rhizosphere of P. euphratica, whereas Marinobacter, Halomonas, and Woeseia were the dominant bacteria at the genus level. Compared with the phylum level, the bacterial community composition of soil samples was significantly different at the genus level. The dominant bacterial genera of rhizosphere bacterial community of P. euphratica were different in different developmental periods; Marinobacter, Halomonas, and Woeseia were, respectively, the optimal bacteria genus in the young, medium/overripe, and decline periods. (4) As shown in the cluster analysis, the bacterial communities of all soils were divided into two groups: the medium and decline periods were clustered into one group, and the young and overripe periods were clustered into another group. (5) Canonical correspondence analysis showed that the soil water content, total potassium, total salt, and soil pH were the main environmental factors influencing the bacterial community composition in the rhizosphere soil of P. euphratica (P<0.05). The results revealed the composition of rhizosphere bacterial communities in different periods of P. euphratica and the main environmental factors affecting the community composition. The findings in this study may provide a scientific basis for the study of rhizosphere microorganisms and the interaction between plants and microorganisms in arid areas.

参考文献

[1] 王世绩. 全球胡杨林的现状及保护和恢复对策[J]. 世界林业研究, 1996(6):37-44.
[1] [ Wang Shiji. The status, conservation and recovery of global resources of Populus euphradica[J]. World Forestry Research, 1996(6):37-44. ]
[2] 周莹莹, 陈亚宁, 朱成刚, 等. 塔里木河下游胡杨(Populus euphratica)种群结构[J]. 中国沙漠, 2018,38(2):315-323.
[2] [ Zhou Yingying, Chen Yaning, Zhu Chenggang, et al. Population structure characteristics of Populus euphratica in the lower reaches of Tarim River[J]. Journal of Desert Research, 2018,38(2):315-323. ]
[3] 杨玉海, 陈亚宁, 蔡柏岩, 等. 极端干旱区胡杨根围丛枝菌根真菌的分离与鉴定[J]. 干旱区地理, 2012,35(2):260-266.
[3] [ Yang Yuhai, Chen Yaning, Cai Baiyan, et al. Arbuscular mycorrhizal in roots of Populus euphratica in the lower reaches of Tarim River in extreme arid area[J]. Arid Land Geography, 2012,35(2):260-266. ]
[4] 李丽君, 张小清, 陈长清, 等. 近20 a塔里木河下游输水对生态环境的影响[J]. 干旱区地理, 2018,41(2):238-247.
[4] [ Li Lijun, Zhang Xiaoqing, Chen Changqing, et al. Ecological effects of water conveyance on the lower reaches of Tarim River in recent twenty years[J]. Arid Land Geography, 2018,41(2):238-247. ]
[5] Deng C Z, Zhang X M, Wu J X, et al. The influences of water comveyance embankments on the Populus euphratica’s communities and populations in the middle research of Tarim River[J]. Acta Ecologica Sinica, 2010,30(5):1356-1366.
[6] 韩璐, 王家强, 王海珍, 等. 塔里木河上游胡杨种群结构与动态[J]. 生态学报, 2014,34(16):4640-4651.
[6] [ Han Lu, Wang Jiaqiang, Wang Haizhen, et al. Population structure and dynamics of Populus euphratica in the upper reaches of Tarim River[J]. Acta Ecologica Sinica, 2014,34(16):4640-4651. ]
[7] Davide B, Ruben G, Philipp C, et al. Structure and function of the bacterial root microbiota in wild and domesticated barley[J]. Cell Host & Microbe, 2015,17(3):392-403.
[8] Fierer N, Breitbart M, Nulton J, et al. Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi, and viruses in soil[J]. Applied and Environmental Microbiology, 2007,73(21):7059-7066.
[9] 黄志强, 邱景璇, 李杰, 等. 基于16S rRNA基因测序分析微生物群落多样性[J/OL]. 微生物学报. [2021-02-04]. https://doi.org/10.13343/j.cnki.wsxb.20200336.
[9] [ Huang Zhiqiang, Qiu Jingxuan, Li Jie, et al. Exploration of microbial diversity based on 16S rRNA gene sequence analysis[J/OL]. Acta Microbiologica Sinica. [2021-02-04]. https://doi.org/10.13343/j.cnki.wsxb.20200336. ]
[10] Leininger S, Urich T, Schloter M, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils[J]. Nature, 2006,442(7104):806-809.
[11] Rafael V, Maurício D C, Júlio César L N, et al. Rhizosphere microbiological processes and eucalypt nutrition: Synjournal and conceptualization[J]. Science of the Total Environment, 2020,746:141305, doi: 10.1016/j.scitotenv.2020.141305.
[12] Matthew C E, Olubukola O B. Effects of inorganic and organic treatments on the microbial community of maize rhizosphere by a shotgun metagenomics approach[J]. Annals of Microbiology, 2020,70(1):70-78.
[13] Han Q, Ma Q, Chen Y, et al. Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean[J]. The ISME Journal, 2020,14(8):1915-1928.
[14] 袁仁文, 刘琳, 张蕊, 等. 植物根际分泌物与土壤微生物互作关系的机制研究进展[J]. 中国农学通报, 2020,36(2):26-35.
[14] [ Yuan Renwen, Liu Lin, Zhang Rui, et al. The interaction mechanism between plant rhizosphere secretion and soil microbe[J]. Chinese Agricultural Science Bulletin, 2020,36(2):26-35. ]
[15] Marschner P, Yang C H, Lieberei R, et al. Soil and plant specific effects on bacterial community composition in the rhizosphere[J]. Soil Biology and Biochemistry, 2001,33(11):1437-1445.
[16] 孙建波, 邹良平, 李文彬, 等. 香蕉不同生育期根际土壤细菌群落变化研究[J]. 热带作物学报, 2016,37(6):1168-1171.
[16] [ Sun Jianbo, Zou Liangping, Li Wenbin, et al. The variation of bacterial community in the banana rhizosphere soil at different growth stages[J]. Chinese Journal of Tropical Crops, 2016,37(6):1168-1171. ]
[17] 李智卫, 王超, 陈伟, 等. 不同树龄苹果园土壤微生物生态特征研究[J]. 土壤通报, 2011,42(2):302-306.
[17] [ Li Zhiwei, Wang Chao, Chen Wei, et al. Biological characteristics of soil microorganisms in apple orchards with different ages[J]. Chinese Journal of Soil Science, 2011,42(2):302-306. ]
[18] 杨青, 何清. 塔里木河流域下游的气候变化与生态环境[J]. 新疆气象, 2000,23(3):11-14.
[18] [ Yang Qing, He Qing. Relationship between climate change and ecological environment in the lower reaches of Tarim River Basin[J]. Bimonthly of Xinjiang Meteorology, 2000,23(3):11-14. ]
[19] 王世绩, 陈炳浩, 李护群. 胡杨林[M]. 北京: 中国环境科学出版社, 1995.
[19] [ Wang Shiji, Chen Binghao, Li Huqun. Populus euphratica forest[M]. Beijing: China Environmental Science Press, 1995. ]
[20] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000.
[20] [ Bao Shidan. Soil and agricultural chemistry analysis[M]. Beijing: China Agriculture Press, 2000. ]
[21] Walters W, Hyde E R, Berg-Lyons D, et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal internal transcribed spacer marker gene primers for microbial community surveys[J]. mSystems, 2016,1(1):9-15.
[22] 王巍琦, 李变变, 张军, 等. 干旱区不同类型盐碱土壤细菌群落多样性[J]. 干旱区研究, 2019,36(5):1202-1211.
[22] [ Wang Weiqi, Li Bianbian, Zhang Jun, et al. Diversity of bacterium communities in saline or alkaline soil in arid area[J]. Arid Zone Research, 2019,36(5):1202-1211. ]
[23] 丁丽, 冀玉良, 李懿. 不同林龄油松根际土壤微生物群落多样性及其影响因子[J]. 水土保持研究, 2020,27(4):184-191, 200.
[23] [ Din Li, Ji Yuliang, Li Yi. Soil microbial diversity and its influencing factors in rhizosphere and non-rhizosphere in the stands of Pinus tabuliformis with different ages in Minjiang River valley[J]. Research of Soil and Water Conservation, 2020,27(4):184-191, 200. ]
[24] 高瑜莲, 柳锦宝, 柳维扬, 等. 近14 a新疆南疆绿洲地区地表蒸散与干旱的时空变化特征研究[J]. 干旱区地理, 2019,42(4):830-837.
[24] [ Gao Yulian, Liu Jinbao, Liu Weiyang, et al. Spatio-temporal variation characteristics of surface evapotranspiration and drought at the oasis area of the southern Xinjiang in recent 14 years[J]. Arid Land Geography, 2019,42(4):830-837. ]
[25] 关添泽, 于萌, 卢刚, 等. 基于分形维数的不同发育阶段胡杨对土壤理化性质的影响[J]. 江苏农业科学, 2020,48(20):293-300.
[25] [ Guan Tianze, Yu Meng, Lu Gang, et al. Effects of different developmental stages of Populus euphratica on soil physical and chemical properties based on fractal dimension[J]. Jiangsu Agricultural Science, 2020,48(20):293-300. ]
[26] Walters W A, Jin Z, Youngblut N, et al. Large-scale replicated field study of maize rhizosphere identifies heritable microbes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018,115(28):7368-7373.
[27] Tian P, Razavi B S, Zhang X C, et al. Microbial growth and enzyme kinetics in rhizosphere hotspots are modulated by soil organics and nutrient availability[J]. Soil Biology and Biochemistry, 2020,141:107662, doi: 10.1016/j.soilbio.2019.107662.
[28] Zhang R F, Vivanco J M, Shen Q R. The unseen rhizosphere root-soil-microbe interactions for crop production[J]. Current Opinion in Microbiology, 2017,37:8-14.
[29] Orlando J, Alfaro M, Bravo L, et al. Bacterial diversity and occurrence of ammonia-oxidizing bacteria in the Atacama Desert soil during a “desert bloom” event[J]. Soil Biology & Biochemistry, 2010,42(7):1183-1188.
[30] Nagy M L, Alejandro P, Garcia-Pichel F. The prokaryotic diversity of biological soil crusts in the Sonoran Desert organ pipe cactus national monument[J]. Fems Microbiology Ecology, 2010,54(2):233-245.
[31] 程冬梅, 唐雅丽, 张坤迪, 等. 新疆天然胡杨林地区根际微生物的种群分析[J]. 生态科学, 2013,32(6):711-717.
[31] [ Cheng Dongmei, Tang Yali, Zhang Kundi, et al. Analysis of bacterial community isolated from rhizosphere of the natural euphrates poplar forest[J]. Ecological Science, 2013,32(6):711-717. ]
文章导航

/