塔里木河流域生态与环境

塔里木河下游生态输水对植被碳源/汇空间格局的影响

展开
  • 1.中国科学院新疆生态与地理研究所,荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐 830011
    2.中国科学院大学,北京 100049
王川(1997-),男,硕士,主要从事干旱区生态变化研究. E-mail: wangchuan201@mails.ucas.ac.cn

收稿日期: 2021-02-07

  修回日期: 2021-03-22

  网络出版日期: 2021-06-01

基金资助

国家重点研发计划(2019YFA0606902);科技部科技基础资源调查专项(2019FY100203)

Effects of ecological water conveyance on the spatial pattern of vegetation carbon sources/sinks in the lower reaches of Tarim River

Expand
  • 1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
    2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2021-02-07

  Revised date: 2021-03-22

  Online published: 2021-06-01

摘要

基于2000年以来塔里木河下游生态输水资料、气象数据、土地利用/覆被变化数据等,结合修正的CASA(Carnegie-Ames-Stanford approach)模型和土壤微生物呼吸模型(Heterotrophic respiration,RH)估算了2001—2019年植被净生态系统生产力(Net ecosysterm productivity,NEP),分析了植被碳源/汇空间分布变化,探讨了塔里木河下游生态输水对植被碳源/汇变化的影响。结果表明:(1) 随着2000年以来塔里木河下游生态输水,下游退化的生态系统有一定程度的恢复,植被碳汇区域呈现扩大的趋势。2001—2019年NEP以0.541 g C·m-2·a-1的速率呈现上升趋势,其中夏季增加速率最大,为0.406 g C·m-2·a-1,增加的区域主要位于大西海子水库北部、英苏、博孜库勒湿地、喀尔达依湿地以及台特玛湖。碳汇面积从2001年的71 km2增加至2019年的355 km2,增加了4倍。(2) 在季节变化上,夏季碳汇面积为109 km2,在四季中占比最大,春秋次之,冬季无明显碳汇面积。(3) 塔里木河下游生态系统碳汇面积变化次序为:草地>林地>耕地>未利用地>水域>建设用地。此外,林地和草地年平均变化率最高,分别为2.69 km2·a-1和3.57 km2·a-1。生态输水量与碳汇面积有很好的线性关系,碳汇面积变化存在约1 a的滞后效应。

本文引用格式

王川,刘永昌,李稚 . 塔里木河下游生态输水对植被碳源/汇空间格局的影响[J]. 干旱区地理, 2021 , 44(3) : 729 -738 . DOI: 10.12118/j.issn.1000–6060.2021.03.15

Abstract

The net ecosystem productivity (NEP) of vegetation in the lower reaches of Tarim River, Xinjiang, China from the year 2000 was estimated using data of ecological water conveyance, meteorology, land use/cover changes combined with the modified Carnegie-Ames-Stanford approach (CASA) mode and soil microbial respiration models (RH). The spatial distribution of vegetation carbon sources/sinks was analyzed, and the effect of ecological water conveyance on changes in these sources/sinks in the lower reaches of Tarim River was discussed. Results showed that (1) ecological water conveyance to the lower reaches of Tarim River since 2000 has allowed the degraded ecosystem in this area to recover to a certain extent. In addition, the vegetation carbon sinks in the area showed an increasing trend. Specifically, from 2001 to 2019, NEP showed an increase rate of 0.541 g C·m-2·a-1. The maximum increase rate, which was 0.406 g C·m-2·a-1, was observed in summer. The areas in which the carbon sinks increased were mainly located in northern Daxihaizi Reservoir, Yingsu, Bozikule Wetland, Kaldayi Wetland, and Taitma Lake. The area of vegetation carbon sinks increased by four times from 71 km2 in 2001 to 355 km2 in 2019. (2) In terms of seasonal variation, the carbon sink area measured 109 km2 in summer. Indeed, this season contributed the largest to the total carbon sink area among the four seasons, followed by spring and autumn. No obvious carbon sink areas were noted in winter. (3) Changes in the total carbon sink area of different ecosystems showed the order grassland>woodland>cultivated land>unused land>water area>construction land. The annual average change rates of the carbon sink areas in woodland and grassland, at 2.69 km2·a-1 and 3.57 km2·a-1, respectively, were higher than those of any of the other ecosystems. A good linear relationship between ecological water conveyance and carbon sink area was observed, and changes in carbon sink area indicated a lag effect of approximately 1 year.

参考文献

[1] 孙天瑶, 李雪梅, 许民, 等. 2000—2018年塔里木河流域植被覆盖时空格局[J]. 干旱区地理, 2020,43(2):415-424.
[1] [ Sun Tianyao, Li Xuemei, Xu Min, et al. Spatial-temporal variations of vegetation coverage in the Tarim River Basin from 2000 to 2018[J]. Arid Land Geography, 2020,43(2):415-424. ]
[2] 王希义, 彭淑贞, 徐海量, 等. 大型输水工程的生态效益与社会经济效益评价——以塔里木河下游为例[J]. 地理科学, 2020,40(2):308-314.
[2] [ Wang Xiyi, Peng Shuzhen, Xu Hailiang, et al. Evaluation of ecological and social-economic benefits of large water conveyance projects: A case study on the lower reaches of the Tarim River[J]. Scientia Geographica Sinica, 2020,40(2):308-314. ]
[3] 王让会, 孙洪波, 黄俊芳, 等. 人为活动影响下的生态系统反馈机制——塔里木河流域生态输水工程的效应分析[J]. 生态与农村环境学报, 2004,20(4):73-76.
[3] [ Wang Ranghui, Sun Hongbo, Huang Junfang, et al. Ecosystem feedback mechanism under the influences of the human activities: Effect analysis of ecological water transfer engineering in Tarim River[J]. Journal of Ecology and Rural Environment, 2004,20(4):73-76. ]
[4] 王慧玲, 吐尔逊·哈斯木. 生态输水前后台特玛湖生态环境变化探究分析[J]. 生态科学, 2020,39(1):93-100.
[4] [ Wang Huiling, Tursun Kasim. Exploration and analysis of ecological environment change of Tetma Lake before and after ecological water transfer[J]. Ecological Science, 2020,39(1):93-100. ]
[5] 王雅梅, 张青青, 徐海量, 等. 生态输水前后台特玛湖植物多样性变化特征[J]. 干旱区研究, 2019,36(5):1186-1193.
[5] [ Wang Yamei, Zhang Qingqing, Xu Hailiang, et al. Change of plant diversity in the Taitema Lake area before and after implementing the ecological water conveyance[J]. Arid Zone Research, 2019,36(5):1186-1193. ]
[6] 庄庆威, 吴世新, 罗格平, 等. 新疆绿洲变化与资源配置协调性分析[J]. 干旱区地理, 2020,43(5):1298-1306.
[6] [ Zhuang Qingwei, Wu Shixin, Luo Geping, et al. Changes in oasis and coordination of resource allocation in Xinjiang[J]. Arid Land Geography, 2020,43(5):1298-1306. ]
[7] 周亮, 朱彦儒, 孙东琪. 河西走廊城乡居民点空间分异特征及绿洲孕育度分析[J]. 干旱区地理, 2020,43(1):227-236.
[7] [ Zhou Liang, Zhu Yanru, Sun Dongqi. Spatial differentiation characteristics and oasis breed degree of urban and rural residents in Hexi Corridor[J]. Arid Land Geography, 2020,43(1):227-236. ]
[8] 刘新华. 塔里木河流域强化水资源管理实践探索和成效浅析[J]. 陕西水利, 2019,(8):32-34, 38.
[8] [ Liu Xinhua. Practice exploration and effect analysis of strengthening water resources management in Tarim River Basin[J]. Shaanxi Water Resources, 2019, (8):32-34, 38. ]
[9] 郭红雨. 塔里木河下游生态输水工程对地下水位变化的影响分析[J]. 西北水电, 2020(5):29-32.
[9] [ Guo Hongyu. Analysis of the impact of the ecological water delivery project on the change of groundwater level in the lower reaches of the Tarim River[J]. Northwest Water Power, 2020(5):29-32. ]
[10] 陈亚宁, 张小雷, 祝向民, 等. 新疆塔里木河下游断流河道输水的生态效应分析[J]. 中国科学: 地球科学, 2004,34(5):475-482.
[10] [ Chen Yaning, Zhang Xiaolei, Zhu Xiangmin, et al. Analysis on ecological effect of water conveyance in the lower reaches of Tarim River in Xinjiang[J]. Science China: Earth Sciences, 2004,34(5):475-482. ]
[11] 雍正, 赵成义, 施枫芝, 等. 近20年塔里木河干流区地下水埋深变化特征及其生态效应研究[J]. 水土保持学报, 2020,34(3):182-189.
[11] [ Yong Zheng, Zhao Chengyi, Shi Fengzhi, et al. Variation characteristics of groundwater depth and its ecological effect in the main stream of Tarim River in recent 20 years[J]. Journal of Soil and Water Conservation, 2020,34(3):182-189. ]
[12] 薛联青, 符芳兵, 祝薄丽, 等. 塔里木河流域下游绿洲演变对生态输水的响应[J]. 河海大学学报(自然科学版), 2019,47(4):310-316.
[12] [ Xue Lianqing, Fu Fangbing, Zhu Boli, et al. Response of oasis evolution to ecological water transport in the downstream of Tarim River Basin[J]. Journal of Hohai University (Natural Sciences), 2019,47(4):310-316. ]
[13] 徐俏, 叶茂, 徐海量, 等. 塔里木河下游生态输水对植物群落组成、多样性和稳定性的影响[J]. 生态学杂志, 2018,37(9):57-64.
[13] [ Xu Qiao, Ye Mao, Xu Hailiang, et al. Effects of ecological water conveyance on the composition, diversity and stability of plant community in the lower reaches of Tarim River[J]. Chinese Journal of Ecology, 2018,37(9):57-64. ]
[14] 赵振勇, 王让会, 张慧芝, 等. 塔里木河下游荒漠生态系统退化机制分析[J]. 中国沙漠, 2006,26(2):220-225.
[14] [ Zhao Zhenyong, Wang Ranghui, Zhang Huizhi, et al. Degradation mechanism of desert ecosystem in lower reaches of Tarim River[J]. Journal of Desert Research, 2006,26(2):220-225. ]
[15] 王希义, 徐海量, 闫俊杰, 等. 基于氧同位素(δ~18O)的塔里木河下游河水向地下水的转化研究[J]. 水资源与水工程学报, 2018,29(2):84-89.
[15] [ Wang Xiyi, Xu Hailiang, Yan Junjie, et al. Conversion of river water to groundwater based on oxygen isotope (δ~18O) in the lower reaches of Tarim River[J]. Journal of Water Resources and Water Engineering, 2018,29(2):84-89. ]
[16] 刘迁迁, 古力米热·哈那提, 王光焰, 等. 间歇性生态输水塔里木河下游断面地下水位变化模拟[J]. 生态学报, 2018,38(15):5519-5528.
[16] [ Liu Qianqian, Gulimire Hanati, Wang Guangyan, et al. Simulation of sectional groundwater level variation in the lower reaches of Tarim River under intermittent ecological water conveyance[J]. Acta Ecologica Sinica, 2018,38(15):5519-5528. ]
[17] 廖淑敏, 薛联青, 陈佳澄, 等. 塔里木河生态输水的累积生态响应[J]. 水资源保护, 2019,35(5):120-126.
[17] [ Liao Shumin, Xue Lianqing, Chen Jiacheng, et al. Cumulative ecological response of ecological water transmission in Tarim River[J]. Water Resources Protection, 2019,35(5):120-126. ]
[18] 汪亮亮, 张同刚, 叶茂, 等. 基于线性趋势外推和GM(1,1)模型预测塔里木河下游胡杨年轮径向生长变化[J]. 中南林业科技大学学报, 2018,38(4):87-94.
[18] [ Wang Liangliang, Zhang Tonggang, Ye Mao, et al. Prediction of the radial growth of Populus euphratica in Tarim River downstream based on linear trend extrapolation and GM (1, 1) model[J]. Journal of Central South University of Forestry & Technology, 2018,38(4):87-94. ]
[19] 谭克龙, 王晓峰, 高会军, 等. 塔里木河流域综合治理生态要素变化的遥感分析[J]. 地球信息科学学报, 2013,15(4):604-610.
[19] [ Tan Kelong, Wang Xiaofeng, Gao Huijun, et al. Analysis of ecological elements of comprehensive harnessing in Tarim River Basin using remote sensing[J]. Journal of Geo-Information Science, 2013,15(4):604-610. ]
[20] 常顺利, 杨洪晓, 葛剑平. 净生态系统生产力研究进展与问题[J]. 北京师范大学学报(自然科学版), 2005(5):517-521.
[20] [ Chang Shunli, Yang Hongxiao, Ge Jianping, et al. Advance and questions in net ecosystem production[J]. Journal of Beijing Normal University (Natural Science), 2005(5):517-521. ]
[21] 古力米热·哈那提, 张音, 关东海, 等. 生态输水条件下塔里木河下游断面尺度地下水流数值模拟[J]. 水科学进展, 2020,31(1):61-70.
[21] [ Gulimire Hanati, Zhang Yin, Guan Donghai, et al. Numerical simulation of groundwater flow at cross-section scale in the lower reaches of Tarim River under the condition of ecological water conveyance[J]. Advances in Water Science, 2020,31(1):61-70. ]
[22] 刘纪远. 中国资源环境遥感宏观调查与动态研究[M]. 北京: 中国科学技术出版社, 1996.
[22] [ Liu Jiyuan. Macro-scale survey and dynamic study of natulral resources and environment of China by remote sensing[M]. Beijing: China Science and Technology Press, 1996. ]
[23] Potter C S, Randerson J T, Field C B, et al. Terrestrial ecosystem production: A process model based on global satellite and surface data[J]. Global Biogeochemical Cycles. 1993,7(4):811-841.
[24] 潘竟虎, 李真. 2001—2012年西北干旱区植被净初级生产力时空变化[J]. 生态学杂志, 2015,34(12):3333-3340.
[24] [ Pan Jinghu, Li Zhen. Temporal-spatial change of vegetation net primary productivity in the arid region of northwest China during 2001 and 2012[J]. Chinese Journal of Ecology, 2015,34(12):3333-3340. ]
[25] 李传华, 周敏, 王玉涛, 等. 西北干旱区植被净初级生产力年际变化及其时空和气候因子的贡献——以河西走廊为例[J]. 生态学杂志, 2020,39(10):3265-3275.
[25] [ Li Chuanhua, Zhou Min, Wang Yutao, et al. Inter-annual variation of vegetation net primary productivity and the contribution of spatial-temporal and climate factors in arid northwest China: A case study of Hexi Corridor[J]. Chinese Journal of Ecology, 2020,39(10):3265-3275. ]
[26] 和清华, 谢云. 我国太阳总辐射气候学计算方法研究[J]. 自然资源学报, 2010,25(2):308-319.
[26] [ He Qinghua, Xie Yun. Research on the climatological calculation method of solar radiation in China[J]. Journal of Natural Resources, 2010,25(2):308-319. ]
[27] 朱文泉, 潘耀忠, 龙中华, 等. 基于GIS和RS的区域陆地植被NPP估算——以中国内蒙古为例[J]. 遥感学报, 2005,9(3):300-307.
[27] [ Zhu Wenquan, Pan Yaozhong, Long Zhonghua, et al. Estimating net primary productivity of terrestrial vegetation based on GIS and RS: A case study in Inner Mongolia, China[J]. Journal of Remote Sensing, 2005,9(3):300-307. ]
[28] Pei Z Y, Ouyang H, Zhou C P, et al. Carbon balance in an alpine steppe in the Qinghai-Tibet Plateau[J]. Journal of Integrative Plant Biology, 2010,51(5):521-526.
[29] 刘春雨. 省域生态系统碳源/汇的时空演变及驱动机制——以甘肃省为例[D]. 兰州: 兰州大学, 2015.
[29] [ Liu Chunyu. The temporal-spatial changes and dynamic mechanism of carbon source/sink of provincial ecosystem: A case of Gansu Province[D]. Lanzhou: Lanzhou University, 2015]
[30] 贠银娟, 赵军. 基于MODIS-NDVI数据的植被碳汇空间格局研究——以石羊河流域为例[J]. 山地学报, 2018,36(4):644-653.
[30] [ Yun Yinjuan, Zhao Jun. Spatial pattern of vegetation carbon sinks based on MODIS-NDVI data: A case study in Shiyang River Basin, China[J]. Mountain Research, 2018,36(4):644-653. ]
文章导航

/