收稿日期: 2021-01-03
修回日期: 2021-02-27
网络出版日期: 2021-06-01
基金资助
中国科学院战略性先导科技专项(XDA20100303);西部之光交叉团队项目(028410101)
Effects of ecological water conveyance on NPP of natural vegetation in the lower reaches of Tarim River
Received date: 2021-01-03
Revised date: 2021-02-27
Online published: 2021-06-01
植被净初级生产力(Net primary production,NPP)是陆地生态系统碳循环及能量流动的关键参数,表征生态系统质量状况。基于2001—2019年MOD13A1、MCD12Q1、TERRACLIMATE等数据,利用CASA模型,估算了近20 a来塔里木河下游生态输水条件下天然植被NPP的时空变化趋势;通过Slope趋势分析和Person相关分析法,从时空分布、不同植被类型和不同累积输水量方面分析了生态输水工程对塔里木河下游天然植被生长状况的影响。结果表明:(1) 在近20 a间,塔里木河下游天然植被NPP整体呈上升趋势,其中极显著增加和显著增加的面积分别占总面积的31.93%(P<0.01)和11.49%(P<0.05),平均增速为0.40 g C∙m-2∙a-1。(2) 在横向上,塔里木河下游天然植被NPP随着与河道距离的增加而下降;纵向上,沿河道自上而下,天然植被NPP依次表现为:上段(28.21 g C∙m-2)>中段(18.70 g C∙m-2)>下段(13.55 g C∙m-2)。(3) 对不同植被类型NPP而言,柽柳群落(57.37 g C∙m-2)>胡杨群落(29.29 g C∙m-2)>草本群落(23.23 g C∙m-2),且柽柳群落在生态输水过程中NPP增幅也最大,增幅达350.20%。(4) 地下水埋深和天然植被NPP均与累积3 a的生态输水量相关性显著,相关系数分别为:-0.70(P<0.01)、0.62(P<0.01),年内总输水量与下一年地下水埋深相关性明显高于与当年地下水埋深的相关性;此外,随地下水埋深持续稳定回升,2010—2019年天然植被NPP与地下水埋深相关性也明显增强(R2=0.62)。
张静静,郝海超,郝兴明,范雪,李远航 . 塔里木河下游生态输水对天然植被NPP的影响[J]. 干旱区地理, 2021 , 44(3) : 708 -717 . DOI: 10.12118/j.issn.1000–6060.2021.03.13
Vegetation net primary production (NPP) is a key parameter of the carbon cycle and energy flow in terrestrial ecosystems that characterizes the quality the latter. This article estimated the spatiotemporal of the NPP natural vegetation over the last 20 years under the condition of ecological water conveyance in the lower reaches of Tarim River, Xinjiang, China based on the CASA model. Meanwhile, the impact of ecological water conveyance projects on the growth of natural vegetation in the lower reaches of Tarim River was analyzed from the perspectives of spatiotemporal distribution, vegetation type, and cumulative water transfer through slope trend and Pearson correlation analyses. Several interesting results were obtained. (1) The NPP of natural vegetation in the lower reaches of Tarim River showed an overall upward trend, with an average growth rate of 0.40 g C∙m-2∙a-1. Extremely significant increases, significant increases, and insignificant changes in the areas accounting for 31.93% (P<0.01), 11.49% (P<0.05), and 52.03%, respectively. (2) Horizontally, the NPP of natural vegetation in the lower reaches of Tarim River decreased as the distance from the river channel increased in the following order: 0-1000 m>1000-2000 m>2000-10000 m. From top to bottom along the river channel, the NPP of natural vegetation decreased in the following order: upper section (28.21 g C∙m-2) > middle section (18.70 g C∙m -2)>lower section (13.55 g C∙m-2), with the largest increase of 61.39% in the middle segment. (3) In terms of vegetation type, the NPP of natural vegetation decreased in the following order: Tamarix community (57.37 g C∙m -2)>Populus euphratica community (29.29 g C∙m-2)>herbal community (23.23 g C∙m-2). Among the vegetation types studied, the Tamarix community showed the greatest increase in NPP (350.20%) during ecological water conveyance. However, the characteristics of NPP changes in the Tamarix, P. euphratica, and herbal communities, the growth period of which is April-October, during the year were similar: NPP increased slowly from April to July but rose quickly from July to September. (4) Groundwater depth and the NPP of natural vegetation were significantly correlated with the accumulated ecological water volume over 3 years, with correlation coefficients of -0.70 (P<0.01) and 0.62 (P<0.01), respectively. The correlation between annual ecological water and groundwater depth in the next year was significantly higher than that in the current year. In addition, as the groundwater depth steadily increased, the correlation between the NPP of natural vegetation and groundwater depth increased significantly from 2010 to 2019 (R 2=0.62). This paper systematically analyzed variations in the NPP of natural vegetation in the lower reaches of Tarim River since the implementation of ecological water conveyance and provides a scientific reference for further water conveyance and ecological restoration plans in the river.
Key words: inland river basins; groundwater depth; CASA model; desert riparian forest
[1] | Field C B, Behrenfeld M J, Randerson J T, et al. Primary production of the biosphere: Integrating terrestrial and oceanic components[J]. Science, 1998,281(5374):237-240. |
[2] | Valerie M D, Zhai P, P?rtner H O, et al. An IPCC special report on the impacts of global warming of 1.5 ℃ above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty[R]. World Meteorological Organization, Geneva, Switzerland, 2018. |
[3] | Zhao M S, Running S W. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009[J]. Science, 2010,329(5994):940-943. |
[4] | 程春晓, 徐宗学, 张淑荣, 等. 黑河流域NPP对气候变化及人类活动的响应[J]. 北京师范大学学报(自然科学版), 2016,52(5):571-579. |
[4] | [ Cheng Chunxiao, Xu Zongxue, Zhang Shurong, et al. Response of NPP to climate change and human activities in the Heihe River Basin[J]. Journal of Beijing Normal University (Natural Science), 2016,52(5):571-579. ] |
[5] | Li J, Wang Z L, Lai C G, et al. Response of net primary production to land use and land cover change in mainland China since the late 1980s[J]. Science of the Total Environment, 2018,639:237-247. |
[6] | 刘洋洋, 王倩, 杨悦, 等. 黄土高原草地净初级生产力时空动态及其影响因素[J]. 应用生态学报, 2019,30(7):2309-2319. |
[6] | [ Liu Yangyang, Wang Qian, Yang Yue, et al. Spatial-temporal dynamics of grassland NPP and its driving factors in the Loess Plateau, China[J]. Chinese Journal of Applied Ecology, 2019,30(7):2309-2319. ] |
[7] | 秦景秀, 郝兴明, 张颖, 等. 气候变化和人类活动对干旱区植被生产力的影响[J]. 干旱区地理, 2020,43(1):117-125. |
[7] | [ Qin Jingxiu, Hao Xingming, Zhang Ying, et al. Effects of climate change and human activities on vegetation productivity in arid areas[J]. Arid Land Geography, 2020,43(1):117-125. ] |
[8] | 赵鹏, 陈桃, 王茜, 等. 气候变化和人类活动对新疆草地生态系统NPP影响的定量分析[J]. 中国科学院大学学报, 2020,37(1):51-62. |
[8] | [ Zhao Peng, Chen Tao, Wang Qian, et al. Quantitative analysis of the impact of climate change and human activities on grassland ecosystem ecosystem NPP in Xinjiang[J]. Journal of University of Chinese Academy of Sciences, 2020,37(1):51-62. ] |
[9] | 欧阳玲, 马会瑶, 王宗明, 等. 气候变化与人类活动对内蒙古东部草地净初级生产力的影响[J]. 生态学报, 2020,40(19):6912-6924. |
[9] | [ Ouyang Ling, Ma Huiyao, Wang Zongming, et al. Impacts of climate change and human activities on net primary productivity of grassland in the eastern Inner Mongolia[J]. Acta Ecologica Sinica, 2020,40(19):6912-6924. ] |
[10] | 周妍妍, 朱敏翔, 郭晓娟, 等. 疏勒河流域气候变化和人类活动对植被NPP的相对影响评价[J]. 生态学报, 2019,39(14):5127-5137. |
[10] | [ Zhou Yanyan, Zhu Minxiang, Guo Xiaojuan, et al. Relative effects of climate change and human activities on net primary productivity in Shule River Basin[J]. Acta Ecologica Sinica, 2019,39(14):5127-5137. ] |
[11] | 李传华, 曹红娟, 范也平, 等. 基于校正的CASA模型NPP遥感估算及分析——以河西走廊为例[J]. 生态学报, 2019,39(5):1617-1625. |
[11] | [ Li Chuanhua, Cao Hongjuan, Fan Yeping, et al. Remote sensing estimation and analysis of net primary productivity (NPP) based on corrected CASA model: A case study of Hexi Corridor[J]. Acta Ecologica Sinica, 2019,39(5):1617-1625. ] |
[12] | 杨会巾, 李小玉, 刘丽娟, 等. 基于耦合模型的干旱区植被净初级生产力估算[J]. 应用生态学报, 2016,27(6):1750-1758. |
[12] | [ Yang Huijin, Li Xiaoyu, Liu Lijuan, et al. Estimation of net primary productivity in arid region based on coupling model[J]. Chinese Journal of Applied Ecology, 2016,27(6):1750-1758. ] |
[13] | Nayak R K, Patel N R, Dadhwal V K. Estimation and analysis of terrestrial net primary productivity over India by remote-sensing-driven terrestrial biosphere model[J]. Environmental Monitoring and Assessment, 2009,170(1-4):195-213. |
[14] | Potter C S, Randerson J T, Field C B, et al. Terrestrial ecosystem production: A process model based on global satellite and surface data[J]. Global Biogeochemical Cycles, 1993,7(4):205-210. |
[15] | 王九中, 邬明权. 北京市门头沟区2003—2014年植被初级生产力时空变化[J]. 华东师范大学学报(自然科学版), 2018(1):163-170. |
[15] | [ Wang Jiuzhong, Wu Mingquan. Spatio-temporal analysis about the primary productivity of Mentougou District in Beijing from 2003 to 2014[J]. Journal of East China Normal University (Natural Science), 2018(1):163-170. ] |
[16] | 张猛, 曾永年. 融合高时空分辨率数据估算植被净初级生产力[J]. 遥感学报, 2018,22(1):143-152. |
[16] | [ Zhang Meng, Zeng Yongnian. Net primary production estimation by using fusion remote sensing data with high spatial and temporal resolution[J]. Journal of Remote Sensing, 2018,22(1):143-152. ] |
[17] | 朱文泉, 潘耀忠, 何浩, 等. 中国典型植被最大光利用率模拟[J]. 科学通报, 2006,51(6):700-706. |
[17] | [ Zhu Wenquan, Pan Yaozhong, He Hao, et al. Simulation of maximum light utilization of typical vegetation in China[J]. Chinese Science Bulletin, 2006,51(6):700-706. ] |
[18] | 管小彬, 沈焕锋, 甘文霞, 等. 基于Landsat TM/ETM+影像的武汉市冬季NPP估算及其时空变化分析[J]. 遥感技术与应用, 2015,30(5):884-890. |
[18] | [ Guan Xiaobin, Shen Huanfeng, Gan Wenxia, et al. Estimation and spatiotemporal analysis of winter NPP in Wuhan based on Landsat TM/ETM+Images[J]. Remote Sensing Technology and Application, 2015,30(5):884-890. ] |
[19] | 白元, 徐海量, 张青青, 等. 基于地下水恢复的塔里木河下游生态需水量估算[J]. 生态学报, 2015,35(3):630-640. |
[19] | [ Bai Yuan, Xu Hailiang, Zhang Qingqing, et al. Evaluation on ecological water requirement in the lower reaches of Tarim River based on groundwater restoration[J]. Acta Ecologica Sinica, 2015,35(3):630-640. ] |
[20] | 朱长明, 李均力, 沈占锋, 等. 基于modis密集时间序列数据的塔里木河下游植被活动过程监测[J]. 资源科学, 2019,41(3):591-600. |
[20] | [ Zhu Changming, Li Junli, Shen Zhanfeng, et al. Spatiotemporal dynamics of vegetation activities in the lower reach of the Tarim River based on MODIS intensive time series data[J]. Resources Science, 2019,41(3):591-600. ] |
[21] | 王珊珊, 王金林, 周可法, 等. 塔里木河下游土地利用/覆被变化对生态输水的响应[J]. 水资源保护, 2021,37(2):69-74, 80. |
[21] | [ Wang Shanshan, Wang Jinlin, Zhou Kefa, et al. Response of land use/land cover change to ecological water transmission in the lower reach of Tarim River[J]. Water Resources Protection, 2021,37(2):69-74, 80. ] |
[22] | 崔永想, 刘海隆, 汪传建. 基于支持向量机和遥感的塔里木河流域下游沙质荒漠变化的分析——以大西海子库区为例[J]. 石河子大学学报(自然科学版), 2021,39(1):46-53. |
[22] | [ Cui Yongxiang, Liu Hailong, Wang Chuanjian. Analysis of sand desertification change in the lower reach of Tarim River Basin during 2000—2018 based on support vector machine and remote sensing: Taking the area of Daxihaizi Reservori as an example[J]. Journal of Shihezi University (Natural Science Edition), 2021,39(1):46-53. ] |
[23] | 陈亚宁, 李卫红, 陈亚鹏, 等. 塔里木河下游断流河道输水的生态响应与生态修复[J]. 干旱区研究, 2006,23(4):521-531. |
[23] | [ Chen Yaning, Li Weihong, Chen Yapeng, et al. Ecological response and ecological regeneration of transfusing stream water along the dried-up watercourse in the lower reaches of the Tarim River, Xinjiang[J]. Arid Zone Research, 2006,23(4):521-531. ] |
[24] | 赵俊红, 周华荣, 卢雅焱, 等. 2000—2015年塔里木胡杨林国家级自然保护区NPP时空动态特征及其影响因素[J]. 干旱区地理, 2020,43(1):190-200. |
[24] | [ Zhao Junhong, Zhou Huarong, Lu Yayan, et al. Temporal-spatial characteristics and influencing factors of the vegetation net primary production in Tarim from 2000 to 2015[J]. Arid Zone Research, 2020,43(1):190-200. ] |
[25] | 孙天瑶, 李雪梅, 许民, 等. 2000—2018年塔里木河流域植被覆盖时空格局[J]. 干旱区地理, 2020,43(2):415-424. |
[25] | [ Sun Tianyao, Li Xuemei, Xu Min, et al. Spatial-temporal variations of vegetation coverage in the Tarim River Basin from 2000 to 2018[J]. Arid Land Geography, 2020,43(2):415-424. ] |
[26] | 邓铭江, 杨鹏年, 周海鹰, 等. 塔里木河下游水量转化特征及其生态输水策略[J]. 干旱区研究, 2017,34(4):717-726. |
[26] | [ Deng Mingjiang, Yang Pengnian, Zhou Haiying, et al. Water conversion and strategy of ecological water conveyance in the lower reaches of the Tarim River[J]. Arid Zone Research, 2017,34(4):717-726. ] |
[27] | 盛昊, 李均力, 杨辽, 等. MODIS-NDVI时序数据分析方法研究——以塔里木河下游第七次秋季输水为例[J]. 干旱区地理, 2007,30(2):251-256. |
[27] | [ Sheng Hao, Li Junli, Yang Liao, et al. MODIS-NDVI time series method: A case study on the 7 th autumn ecologic water conveyance in the lower reaches of Tarim River [J]. Arid Land Geography, 2007,30(2):251-256. ] |
[28] | 廖淑敏, 薛联青, 陈佳澄, 等. 塔里木河生态输水的累积生态响应[J]. 水资源保护, 2019,35(5):120-127. |
[28] | [ Liao Shumin, Xue Lianqing, Chen Jiacheng, et al. Cumulative ecological response of ecological water transmission in Tarim River[J]. Water Resources Protection, 2019,35(5):120-127. ] |
[29] | 吐尔逊·哈斯木, 曼尼萨汗·吐尔隼, 韩桂红, 等. 近50a以来塔里木河下游土地沙漠化影响因子分析[J]. 中国沙漠, 2009,29(6):1029-1034. |
[29] | [ Tursun Kasim, Manisahan Tursun, Han Guihong, et al. Analysis on impact factors of land desertification in lower reaches of Tarim River in past 50 years[J]. Journal of Desert Research, 2009,29(6):1029-1034. ] |
[30] | 黄粤, 包安明, 王士飞, 等. 间歇性输水影响下的2001—2011年塔里木河下游生态环境变化[J]. 地理学报, 2013,68(9):1252-1262. |
[30] | [ Huang Yue, Bao Anming, Wang Shifei, et al. Eco-environmental change in the lower Tarim River under the influence of intermittent water transport[J]. Acta Geographica Sinica, 2013,68(9):1252-1262. ] |
/
〈 |
|
〉 |