塔里木河流域生态与环境

塔里木河下游生态输水对胡杨林生态系统碳循环的影响

展开
  • 1.中国科学院新疆生态与地理研究所,荒漠与绿洲生态国家重点实验室,新疆 乌鲁木齐 830011
    2.新疆农业大学草业与环境科学学院,新疆 乌鲁木齐 830052
杨玉海(1972-),女,副研究员,主要从事干旱区土壤生态研究. E-mail: yangyh@ms.xjb.ac.cn

收稿日期: 2021-02-07

  修回日期: 2021-03-03

  网络出版日期: 2021-06-01

基金资助

国家自然科学基金(U1803101);科技部科技基础资源调查专项(2019FY100203)

Effects of ecological water conveyance on carbon cycle of Populus euphratica forest ecosystem in the lower reaches of Tarim River

Expand
  • 1. Key Laboratory of Oasis Ecology and Desert Environment, Xinjiang Institute of Ecology and Geography, CAS, Urumqi 830011, Xinjiang, China
    2. College of Pratacultural and Environmental Sciences, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China

Received date: 2021-02-07

  Revised date: 2021-03-03

  Online published: 2021-06-01

摘要

2000—2020年期间向塔里木河下游的生态输水有效抬升了下游的地下水位,并对下游胡杨林生态系统的碳循环产生了重要影响。综述了生态输水对塔里木河下游胡杨林生态系统植被固碳作用可能产生的影响,分析了植被类型变化可能对胡杨林土壤有机碳含量和土壤有机碳储量产生的影响,总结了生态输水后胡杨林碳释放关键过程-土壤呼吸对生态输水的响应,解析了间歇性生态输水所致的水淹干扰对胡杨凋落叶分解的影响。综述分析表明,生态输水工程的实施对塔里木河下游荒漠河岸林生态系统的碳固定和碳释放过程均产生了作用,从而对荒漠河岸林生态系统碳循环产生了复杂的影响。总体而言,20 a的生态输水增大了塔里木河下游生态系统碳汇面积,提高了下游胡杨林生态系统植被生产力,遏制了下游胡杨林的退化,使部分裸地逐渐变为草地、林地或灌丛地,这种演变可增加土壤有机碳含量和区域土壤有机碳储量。生态输水所致的地下水位和土壤水分的变化会影响胡杨林土壤碳释放过程,其中胡杨林土壤呼吸速率与地下水位有关,而水淹干扰对胡杨凋落叶质量损失速率产生了影响。

本文引用格式

杨玉海,朱成刚,汪洋,周洪华 . 塔里木河下游生态输水对胡杨林生态系统碳循环的影响[J]. 干旱区地理, 2021 , 44(3) : 637 -642 . DOI: 10.12118/j.issn.1000–6060.2021.03.05

Abstract

Desert riparian forests are an important vegetation type for inland river valleys in the arid region of northwest China. In the lower reaches of Tarim River, natural Populus euphratica forest ecosystems are dependent on streamflow. Streamflow in the lower reaches (at 321 km) completely ceased since 1972. The soil has been seriously desertified, and plants have seriously degenerated in the region. A series of environmental measures have been taken to restore the natural P. euphratica forest in the lower reaches of Tarim River, including an ecological water conveyance project. In this paper, on the basis of the results of many studies in the last 20 years, the effects of ecological water conveyance on the carbon cycle of natural P. euphratica forest ecosystems in the lower reaches of Tarim River were comprehensively reviewed. The possible effects of ecological water conveyance on carbon sequestration of P. euphratica forest ecosystems were reviewed, and the effects of vegetation type changes on soil organic carbon content and regional soil organic carbon storage in the lower reaches of Tarim River were analyzed. In addition, the rates of soil respiration and P. euphratica leaf litter decomposition of the P. euphratica forest were reviewed. The implementation of ecological water conveyance affected the carbon cycle of the P. euphratica forest in the lower reaches of Tarim River. Overall, with the implementation of the ecological water conveyance, the carbon sink area and vegetation productivity of the P. euphratica forest increased from 2001 to 2019. The ecological water conveyance restrained vegetation degradation, and some bare land gradually changed into grassland, woodland, or shrubland, which could increase soil organic carbon content and regional soil organic carbon storage in the lower reaches of Tarim River. The groundwater level and soil moisture were affected by the ecological water conveyance in the lower reaches of Tarim River. The soil respiration rate of the P. euphratica forest was related to the groundwater level, and the mass loss rates of P. euphratica leaf litter were affected by moisture during decomposition in the lower reaches of Tarim River. Carbon cycle changes in desert riparian forest ecosystems in arid areas may have a profound influence on regional and even global climate change. Therefore, under the background of limited water resources, conserving and restoring the desert riparian forest in the lower reaches of Tarim River through an ecological water conveyance project is of great significance.

参考文献

[1] Dixon R K, Brown S, Houghton R A, et al. Carbon pools and flux of global forest ecosystems[J]. Science, 1994,263:185-190.
[2] 王群, 范俊荣. 森林碳汇机制下保护生物多样性的规制问题探讨[J]. 林业科学, 2013,49(9):148-152.
[2] [ Wang Qun, Fan Junrong. Discussion of biodiversity protection regulation problems under the forest carbon sequestration mechanism[J]. Scientia Silvae Sinicae, 2013,49(9):148-152. ]
[3] 陈亚宁, 李卫红, 陈亚鹏, 等. 荒漠河岸林建群植物的水分利用过程分析[J]. 干旱区研究, 2018,35(1):130-136.
[3] [ Chen Yaning, Li Weihong, Chen Yapeng, et al. Water use process of constructive plants in desert riparian forest[J]. Arid Zone Research, 2018,35(1):130-136. ]
[4] 张经天, 席海洋. 荒漠河岸林地下水位时空动态及其对地表径流的响应[J]. 干旱区地理, 2020,43(2):388-398.
[4] [ Zhang Jingtian, Xi Haiyang. Spatiotemporal dynamics of groundwater levels in a desert riparian forest and its response to surface runoff[J]. Arid Land Geography, 2020,43(2):388-398. ]
[5] 陈亚宁, 李卫红, 陈亚鹏, 等. 科技支撑新疆塔里木河流域生态修复及可持续管理[J]. 干旱区地理, 2018,41(5):901-907.
[5] [ Chen Yaning, Li Weihong, Chen Yapeng, et al. Science in supporting the ecological restoration and sustainable development of the Tarim River Basin[J]. Arid Land Geography, 2018,41(5):901-907. ]
[6] 杨玉海. 塔里木河中下游土壤生态系统特性及其对生态恢复的响应[D]. 乌鲁木齐: 中国科学院新疆生态与地理研究所, 2008.
[6] [ Yang Yuhai. Characteristics of soil ecosystem in the middle and lower reaches of Tarim River and its response to ecological restoration[D]. Urumqi: Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 2008. ]
[7] 陈亚宁, 李卫红, 陈亚鹏, 等. 新疆塔里木河下游断流河道输水与生态恢复[J]. 生态学报, 2007,27(2):538-545.
[7] [ Chen Yaning, Li Weihong, Chen Yapeng, et al. Water conveyance in dried-up riverway and ecological restoration in the lower reaches of Tarim River, China[J]. Acta Ecologica Sinica, 2007,27(2):538-545. ]
[8] 王建刚, 李霞, 石瑞花, 等. 塔里木河下游胡杨对输水的生态响应[J]. 自然资源学报, 2008,23(4):619-625.
[8] [ Wang Jiangang, Li Xia, Shi Ruihua, et al. Ecological responses of Populus euphratica to water supply in the lower reaches of Tarim River[J]. Journal of Natural Resources, 2008,23(4):619-625. ]
[9] 史浩伯, 孙桂丽, 陈亚宁, 等. 基于生态位分化的塔里木河下游植物种群分布格局与共存机制[J]. 西部林业科学, 2019,48(6):114-120.
[9] [ Shi Haobo, Sun Guili, Chen Yaning, et al. Plant populations in the lower reaches of the Tarim River based on niche differentiated distribution pattern and coexistence mechanism[J]. Journal of West China Forestry Science, 2019,48(6):114-120. ]
[10] 徐俏, 叶茂, 徐海量, 等. 塔里木河下游生态输水对植物群落组成、多样性和稳定性的影响[J]. 生态学杂志, 2018,37(9):2603-2610.
[10] [ Xu Qiao, Ye Mao, Xu Hailiang, et al. Effects of ecological water conveyance on the composition diversity and stability of plant community in the lower reaches of Tarim River[J]. Chinese Journal of Ecology, 2018,37(9):2603-2610. ]
[11] 方精云, 柯金虎, 唐志尧, 等. 生物生产力的“4P”概念、估算及其相互关系[J]. 植物生态学报, 2001,25(4):414-419.
[11] [ Fang Jingyun, Ke Jinhu, Tang Zhiyao, et al. Implications and estimations of four terrestrial productivity parameters[J]. Chinese Journal of Plant Ecology, 2001,25(4):414-419. ]
[12] 张雪琪, 夏倩倩, 陈亚宁, 等. 近20年塔里木河生态输水对植被总初级生产力变化的影响[J/OL]. 干旱区地理. [2021-02-25]. https://kns.cnki.net/kcms/detail/65.1103.x.20210328.1825.006.html.
[12] [ Zhang Xueqi, Xia Qianqian, Chen Yaning, et al. Effect of ecological water transport on gross primary productivity of vegetation in Tarim River in recent 20 years[J/OL]. Arid Land Geography. [2021-02-25]. https://kns.cnki.net/kcms/detail/65.1103.x.20210328.1825.006.html. ]
[13] 王川, 刘永昌, 李稚. 塔里木河下游生态输水对生态系统碳源/汇空间格局的影响分析[J/OL]. 干旱区地理. [2021-02-25]. https://kns.cnki.net/kcms/detail/65.1103.x.20210407.1322.006.html.
[13] [ Wang Chuan, Liu Yongchang, Li Zhi. Analysis on the impact of ecological water transportation on the spatial pattern of ecosystem carbon sources/sinks in the lower Tarim River[J/OL]. Arid Land Geography. [2021-02-25]. https://kns.cnki.net/kcms/detail/65.1103.x.20210407.1322.006.html. ]
[14] 张静静, 郝兴明, 郝海超, 等. 塔里木河下游生态输水对天然植被NPP的影响[J/OL]. 干旱区地理. [2021-02-25]. https://kns.cnki.net/kcms/detail/65.1103.X.20210408.1044.002.html.
[14] [ Zhang Jingjing, Hao Xingming, Hao Haichao, et al. Effects of ecological water transport on NPP of natural vegetation in the lower reaches of Tarim River[J/OL]. Arid Land Geography. [2021-02-25]. https://kns.cnki.net/kcms/detail/65.1103.X.20210408.1044.002.html. ]
[15] 牛婷, 李霞, 张绘芳, 等. 胡杨对非确定性输水响应的生态表征[J]. 资源科学, 2012,34(5):819-826.
[15] [ Niu Ting, Li Xia, Zhang Huifang, et al. Ecological characterization of Populus euphratica’s response to non-deterministic water delivery[J]. Resources Science, 2012,34(5):819-826. ]
[16] 周洪华, 陈亚宁, 李卫红, 等. 塔里木河下游胡杨气体交换特性及其环境介绍[J]. 中国沙漠, 2008,28(4):665-672.
[16] [ Zhou Honghua, Chen Yaning, Li Weihong, et al. Characterization of photosynjournal of Populus euphratica Oliv and its microclimate explanation in lower Tarim River[J]. Journal of Desert Research, 2008,28(4):665-672. ]
[17] 杨玉海, 李卫红, 李慧敏, 等. 塔里木河下游退化生态系统恢复对土壤有机碳的影响[J]. 土壤通报, 2010,41(4):855-858.
[17] [ Yang Yuhai, Li Weihong, Li Huimin, et al. Impacts of degraded ecological system restoration on soil organic carbon in inland basin of Tarim River[J]. Chinese Journal of Soil Science, 2010,41(4):855-858. ]
[18] Batlle-Bayer L, Batjess N H, Bindraban P S. Changes in organic carbon stocks upon land use conversion in the Brazilian Cerrado: A review[J]. Agriculture Ecosystems and Environment, 2010,137(1-2):47-58.
[19] 杨玉海, 陈亚宁, 李卫红, 等. 塔里木河干流土地利用/覆被变化对土壤有机碳储量的影响[J]. 中国环境科学, 2016,36(9):2784-2790.
[19] [ Yang Yuhai, Chen Yaning, Li Weihong, et al. Effects of land use/cover change on soil organic carbon storage in the main stream of Tarim River[J]. China Environmental Science, 2016,36(9):2784-2790. ]
[20] 周莉, 李保国, 周广胜. 土壤有机碳的主导影响因子及其研究进展[J]. 地球科学进展, 2005,20(1):99-105.
[20] [ Zhou Li, Li Baoguo, Zhou Guangsheng. Advance in controlling factors of soil organic carbon[J]. Advance in Earth Science, 2005,20(1):99-105. ]
[21] 张帅, 汪洋, 夏婷婷, 等. 塔里木河下游生态系统服务价值对生态输水过程的响应[J/OL]. 干旱区地理. [2021-02-25]. https://kns.cnki.net/kcms/detail/65.1103.X.20210421.1011.002.html.
[21] [ Zhang Shuai, Wang Yang, Xia Tingting, et al. Response of ecosystem service value to the process of ecological water transport in the lower Tarim Rive[J/OL]. Arid Land Geography. [2021-02-25]. https://kns.cnki.net/kcms/detail/65.1103.X.20210421.1011.002.html. ]
[22] Wang Y, Zhang S, Zhen H, et al. Spatiotemporal evolution characteristics in ecosystem service values based on land use/cover change in the Tarim River Basin, China[J]. Sustainability, 2020,12(18):1-16.
[23] 黄湘. 塔里木河下游河道断流对土壤碳释放的影响[J]. 环境科学与技术, 2018,41(5):133-137.
[23] [ Huang Xiang. Effect of river channel drying on soil carbon release in the lower reaches of Tarim River[J]. Environmental Science & Technology, 2018,41(5):133-137. ]
[24] 黄湘, 陈亚宁, 李卫红, 等. 塔里木河中下游胡杨群落土壤碳通量日变化研究[J]. 自然科学进展, 2006,16(11):1405-1410.
[24] [ Huang Xiang, Chen Yaning, Li Weihong, et al. Daily variation of soil carbon flux in soils of Populus euphratica community in the middle and lower reaches of the Tarim River[J]. Progress in Nature Science, 2006,16(11):1405-1410. ]
[25] Huang X, Chen Y N, Ma J X. et al. Special variation of soil respiration and its effecting factors in temperate deserts, China[J]. Procedia Environmental Science, 2011(10):228-238
[26] 黄湘, 李卫红, 马建新, 等. 通过改变光热条件分析胡杨群落光合作用对土壤呼吸速率的影响[J]. 中国沙漠, 2011,31(5):1167-1173.
[26] [ Huang Xiang, Li Weihong, Ma Jianxin, et al. Influence of photosynjournal on soil respiration rates for Populus euphratica in different light conditions in arid environments[J]. Journal of Desert Research, 2011,31(5):1167-1173. ]
[27] Trumbore S E, Czimczik C I. An uncertain future for soil carbon[J]. Science, 2008,321(5895):1455-1456.
[28] Chambers J, Higuchi N, Tribuzy E, et al. Carbon sink for a century[J]. Nature, 2001,410:429.
[29] Sayer E J. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems[J]. Biological Reviews, 2006,81(1):1-31.
[30] Berg B, Mcclaugherty C. Plant litter: Decomposition, humus formation, carbon sequestration[M]. 2nd ed. Berlin: Springer-Verlag, 2008: 254.
[31] 木巴热克·阿尤普, 陈亚宁, 李卫红, 等. 极端干旱环境下的胡杨细根分布与土壤特征[J]. 中国沙漠, 2011,31(6):1450-1458.
[31] [ Mubareke Ayoupu, Chen Yaning, Li Weihong, et al. Fine root distribution of Populus euphratica Oliv. and its relations with soil factors under extremely arid environment[J]. Journal of Desert Research, 2011,31(6):1450-1458. ]
[32] 顾芳. 塔里木河干流胡杨林空间分布变化研究[J]. 地理空间信息, 2020,18(9):48-51.
[32] [ Gu Fang. Research on the spatial distribution variation of the Populus euphratica in the mainstream of Tarim River[J]. Geospatial Information, 2020,18(9):48-51. ]
[33] 刘茂秀, 史军辉, 王新英, 等. 塔河流域天然胡杨林不同林龄地上生物量及碳储量[J]. 水土保持通报, 2016,36(5):326-329.
[33] [ Liu Maoxiu, Shi Junhui, Wang Xinying, et al. Aboveground biomass and carbon storage of Populus euphratica plantation with different ages in Tahe River Basin[J]. Bulletion of Soil and Water Conservation, 2016,36(5):326-329. ]
[34] Borken W, Davidson E A, Savage K, et al. Drying and wetting effects on carbon dioxide release from organic horizons[J]. Soil Science Society of America Journal, 2003,67(6):1888-1896.
[35] Ngao J, Epron D, Brechet C, et al. Estimating the contribution of leaf litter decomposition to soil CO2 efflux in a beech forest using 13C-depleted litter [J]. Global Change Biology, 2005,11:1768-1776.
[36] 赵振勇, 张科, 卢磊, 等. 塔里木河中游洪水漫溢区荒漠河岸林实生苗更新[J]. 生态学报, 2011,31(12):3322-3329.
[36] [ Zhao Zhenyong, Zhang Ke, Lu Lei, et al. Seedling recruitment in desert riparian forest following river flooding in the middle reaches of the Tarim River[J]. Acta Ecologica Sinica, 2011,31(12):3322-3329. ]
[37] Yang Y H, Zhou H H, Ye Z X, et al. Effects of transient flooding on leaf litter decomposition: A case study of Populus euphratica Oliv. leaf in an arid area[J]. International Journal of Agriculture and Biology, 2019,22(6):1386-1392.
文章导航

/