地表过程研究

巴丹吉林沙漠东南缘末次冰期沉积物地球化学特征及气候指示意义

展开
  • 1.阜阳师范大学历史文化与旅游学院地理系,安徽 阜阳 236037
    2.阜阳师范大学皖北文化研究中心,安徽 阜阳 236037
    3.中国地质大学(北京)地球科学与资源学院,北京 100083
范小露(1987-),女,讲师,主要从事第四纪地质学与气候演变等方面的研究. E-mail:atsunnyshore@126.com

收稿日期: 2019-10-03

  修回日期: 2019-12-25

  网络出版日期: 2021-04-14

基金资助

国家自然科学基金(41572094);阜阳师范大学青年人才基金重点项目(rcxm201907);阜阳师范大学科学研究项目(2018FSKJ08 ZD);阜阳师范大学博士科研启动基金(2016kyqd0004);安徽省高校人文社科重点研究基地阜阳师范大学皖北文化研究中心2020年度重点项目资助(SK2020A0311)

Geochemical characteristics and paleoclimatic significance of the last glacial sediments in the southeastern margin of Badain Jaran Desert

Expand
  • 1. School of History Culture and Tourism, Fuyang Normal University, Fuyang 236037, Anhui, China
    2. The Center of Cultural Research in Northern Anhui, Fuyang Normal University, Fuyang 236037, Anhui, China
    3. School of Earth Science and Resource, China University of Geoscience, Beijing 100083, China

Received date: 2019-10-03

  Revised date: 2019-12-25

  Online published: 2021-04-14

摘要

沙漠古气候重建对于了解区域古气候演变具有重要意义。通过以巴丹吉林沙漠东南缘巴润宝日陶勒盖(BRBG)剖面为研究对象,进行全样地球化学、分组分分粒级元素地球化学及Sr同位素分析,重建该地区末次冰期期间(66.8~41.0βka)的气候演化模式。研究表明:66.8~41.0βka呈现残留组分高Sr/Ca值、酸溶组分及残留组分低Ba含量特征,指示化学风化增强及湖泊补给量增加,反映暖湿气候特征。微量元素变化特征指示沉积物细粒组分中的微量元素指标对气候的敏感度高于粗粒组分。Sr同位素结果显示酸溶组分中87Sr/86Sr值在66.8βka附近达到最大值,可能与湖水盐度升高相关。此外,几乎所有指标均指示在41.0βka前后存在一次气候突变事件,研究认为巴丹吉林沙漠东南缘41.0βka前后从暖湿突变为干冷气候可能是该时期的西伯利亚高压系统增强所致。

本文引用格式

范小露,张新毅,田明中 . 巴丹吉林沙漠东南缘末次冰期沉积物地球化学特征及气候指示意义[J]. 干旱区地理, 2021 , 44(2) : 409 -417 . DOI: 10.12118/j.issn.1000–6060.2021.02.12

Abstract

Reconstructing the desert paleoclimate is critical for understanding paleoclimate evolution. As the third-largest desert in China, the Badain Jaran Desert’s mega dune is the highest in China and the world and unique for its crowded mega dunes. This region’s geology and environmental information are challenging to acquire. By using innovative methods and techniques to study the Badain Jaran Desert’s climate change, research will significantly influence climate studies in the northwest arid area and even East Asia. The climate evolution model during the last glacial period (66.8-41.0 ka) in the Barunbaoritaolegai (BRBG) section in the southeastern margin of the Badain Jaran Desert was reconstructed using whole-sample geochemistry, granular-scale element geochemistry, and Sr isotope analysis. During 66.8-41.0 ka, the residual components showed high Sr/Ca values, whereas acid-soluble and residual components showed low Ba contents, indicating enhanced chemical weathering and increased lake supply, reflecting the characteristics of a warm and humid climate. The trace element changes indicate that trace elements in the fine grain components of sediments are more sensitive to climate than the coarse ones. Although the geochemical indices from the entire sample show little obvious feedback, the other innovative technique used in this study suggests higher efficiency and more sensitivity to environmental variation. Therefore, this approach could be used in future studies on climate and environmental variation. Based on the experimental outputs, the K and Sr concentrations in the residual components of fine fraction (<125 μm), the Sr/Ca values of residual components of fine fraction (<125 μm), the K concentrations in the acid-soluble components of the coarse fraction (>125 μm), and the Al concentrations in both acid-soluble and residual components of the coarse fraction (>125 μm) are the typical sensitive chemical indicators of climate change. The research group found that fine-sized fractions in the sediments are sensitive to climate change, which is an ideal media to reflect environmental vibration. By introducing novel ideas to climate-related research, the team discovered that Ba variations in acid-soluble fractions are highly sensitive, whether in fine or coarse grain-sized sediments. The87Sr/86Sr ratio of sediments from the inland lake is a critical indicator of chemical weathering intensity. The ratio change in acid-dissolved components indicates a change in strontium in the deposition area, whereas the ratio change in residual components reflects a change in strontium in the source area. The opposite trend is evident for the strontium ratio, showing that the response of different sediment components to chemical weathering is different in the provenance and sedimentary regions. Sr isotope results show that the 87Sr/86Sr value reached a maximum at ~66.8 ka, which could be related to the increase in lake water salinity. Furthermore, most indicators show a sudden climate change at ~41.0 ka, and the study indicates that the abrupt change from warm wet climate to dry cold climate at ~41.0 ka in the southeastern margin of Badain Jaran Desert might be caused by the enhancement of a Siberian high-pressure system in this period.

参考文献

[1] Yang X, Scuderi L, Paillou P, et al. Quaternary environmental changes in the drylands of China: A critical review[J]. Quaternary Science Reviews, 2011,30(23-24):3219-3233.
[2] Li Z, Wang N, Li R, et al. Indication of millennial-scale moisture changes by the temporal distribution of Holocene calcareous root tubes in the deserts of the Alashan Plateau, northwest China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015,440:496-505.
[3] 孙庆峰, 陈发虎, 李孝泽. 巴丹吉林沙漠第四纪研究评述与讨论[J]. 干旱区研究, 2008,25(2):304-310.
[3] [ Sun Qingfeng, Chen Fahu, Li Xiaoze. Review and discussion about the progress of Quaternary research of the Badain Jaran Desert, China[J]. Arid Zone Research, 2008,25(2):304-310. ]
[4] Liu S, Lai Z, Wang Y, et al. Growing pattern of mega-dunes in the Badain Jaran Desert in China revealed by luminescence ages[J]. Quaternary International, 2015,410:111-118.
[5] Wang F, Sun D, Chen F, et al. Formation and evolution of the Badain Jaran Desert, north China, as revealed by a drill core from the desert centre and by geological survey[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015,426:139-158.
[6] Wang N, Ning K, Li Z, et al. Holocene high lake-levels and pan-lake period on Badain Jaran Desert[J]. Science China Earth Sciences, 2016,59(8):1633-1641.
[7] 赵力强, 张律吕, 王乃昂, 等. 巴丹吉林沙漠湖泊形态初步研究[J]. 干旱区研究, 2018,35(5):1001-1011.
[7] [ Zhao Liqiang, Zhang Lvlv, Wang Nai’ang, et al. Morphology of the lakes in the Badain Jaran Desert[J]. Arid Zone Research, 2018,35(5):1001-1011. ]
[8] Jin K, Rao W, Guo Q, et al. Understanding recharge of soil water in a sand dune at the Nuoertu of Badain Jaran Desert using isotopes of H and O[J]. Journal of Radioanalytical and Nuclear Chemistry, 2018,318:1063-1075.
[9] Li Z, Chen Q, Zhang C, et al. Environmental significance of the chemical composition of sediments in groundwater-recharged lakes of the Badain Jaran Desert, NW China[J]. Geochemistry, Geophysics, Geosystems, 2019,20(2):1026-1040.
[10] Hu F, Yang X. Geochemical and geomorphological evidence for the provenance of aeolian deposits in the Badain Jaran Desert, northwestern China[J]. Quaternary Science Reviews, 2016,131:179-192.
[11] Liu W, Jiang H, Shi C, et al. Chemical and strontium isotopic characteristics of the rivers around the Badain Jaran Desert, northwest China: Implication of river solute origin and chemical weathering[J]. Environmental Earth Sciences, 2016,75(15):1119.
[12] Wang Z, Chen T, Liu S, et al. Aeolian origin of interdune lakes in the Badain Jaran Desert, China[J]. Arabian Journal of Geosciences, 2016,9(3):190.
[13] Zhao T, Liu W, Xu Z, et al. Cosmogenic nuclides (10Be and 26Al) erosion rate constraints in the Badain Jaran Desert, northwest China: Implications for surface erosion mechanisms and landform evolution[J]. Geosciences Journal, 2018,23(1):59-68.
[14] Yang Y, Li B, Qiu S, et al. Climatic changes indicated by trace elements in the Chagelebulu Stratigraphic Section, Badain Jaran Desert, China, since 150 kyr BP[J]. Geochemistry International, 2008,46(1):96-103.
[15] Guo Y, Li B, Wang F, et al. Holocene millennial-scale climate variations from the record of primary chemical elements in Badain Jaran Desert, China[J]. Arabian Journal of Geosciences, 2016,9(1):51.
[16] Li Z, Wei Z, Dong S, et al. The paleoenvironmental significance of spatial distributions of grain size in groundwater-recharged lakes: A case study in the hinterland of the Badain Jaran Desert, northwest China[J]. Earth Surface Processes and Landforms, 2018,43(8):363-372.
[17] Yang X, Man, Dong J, et al. Recharge to the inter-dune lakes and Holocene climatic changes in the Badain Jaran Desert, western China[J]. Quaternary Research, 2010,73(1):10-19.
[18] Yang X, Williams M. The ion chemistry of lakes and Late Holocene desiccation in the Badain Jaran Desert, Inner Mongolia, China[J]. Catena, 2003,51(1):45-60.
[19] 王涛. 巴丹吉林沙漠形成演变的若干问题[J]. 中国沙漠, 1990,10(1):29-40.
[19] [ Wang Tao. Some problems on the formation and evolution of Badain Jaran Desert[J]. Journal of Desert Research, 1990,10(1):29-40. ]
[20] Fan X, Zhang X, Tian M. Climate change during the last glacial period on the southeast margin of Badain Jaran Desert, northwest China[J]. Journal of Mountain Science, 2019,16(10):2379-2388.
[21] 朱立平, 王君波, 陈玲, 等. 藏南沉错湖泊沉积多指标揭示的2万年以来环境变化[J]. 地理学报, 2004,59(4):514-524.
[21] [ Zhu Liping, Wang Junbo, Chen Ling, et al. Environmental changes in the past 20,000 years revealed by multiple indicators of sedimentation in the faulted lakes in southern Tibet[J]. Acta Geographica Sinica, 2004,59(4):514-524. ]
[22] 李培泉, 刘志和, 卢光山, 等. 冲绳海槽沉积物中U,Ra,Th,~(40)K的地球化学研究[J]. 海洋与湖沼, 1984,15(5):457-467.
[22] [ Li Peiquan, Liu Zhihe, Lu Guangshan, et al. Geochemical study of U,Ra,Th,~(40)K in Okinawa trough sediments[J]. Oceans and Lakes, 1984,15(5):457-467. ]
[23] Hess J, Bender M, Schilling J. Evolution of the ratio of Strontium-87 to Strontium-86 in seawater from Cretaceous to present[J]. Science, 1986,231(4741):979-984.
[24] 范小露, 田明中, 刘斯文, 等. 巴丹吉林沙漠东南部末次间冰期环境演变: 来自粒度、光释光(OSL)及14C测年的证据[J]. 干旱区地理, 2014,37(5):892-900.
[24] [ Fan Xiaolu, Tian Mingzhong, Liu Siwen, et al. Environmental change of southeastern Badain Jaran Desert during the last interglacial: Evidences from the grain-size analysis,optically stimulated luminescence and radiocarbon dating[J]. Arid Land Geography, 2014,37(5):892-900. ]
[25] 沈吉, 吕厚远, 王苏民, 等. 错鄂孔深钻揭示的青藏高原中部2.8 MaBP以来环境演化及其对构造事件响应[J]. 中国科学(D辑), 2004,34(4):359-366.
[25] [ Shen Ji, Lyu Houyuan, Wang Sumin, et al. Environmental evolution and its response to tectonic events since the 2.8 MaBP in the central Qinghai-Tibet Plateau revealed by the deep drilling in chokang[J]. Science in China (series D), 2004,34(4):359-366. ]
[26] Obreht I, Hambach U, Veres D, et al. Shift of large-scale atmospheric systems over Europe during late MIS 3 and implications for modern human dispersal[J]. Scientific Reports, 2017,7(1):5848.
[27] 李吉均, 方小敏, 潘保田, 等. 新生代晚期青藏高原强烈隆起及其对周边环境的影响[J]. 第四纪研究, 2001,21(5):381-391.
[27] [ Li Jijun, Fang Xiaomin, Pan Baotian, et al. Strong uplift of the late Cenozoic Qinghai-Tibet Plateau and its influence on the surrounding environment[J]. Quaternary Research, 2001,21(5):381-391. ]
[28] Hao Q, Wang L, Oldfield F, et al. Delayed build-up of arctic ice sheets during 400,000-year minima in insolation variability[J]. Nature, 2012,490:393-396.
[29] Li Y, Song Y, Fitzsimmons K, et al. Eolian dust dispersal patterns since the last glacial period in eastern Central Asia: Insights from a loess-paleosol sequence in the Ili Basin[J]. Climate of the Past, 2018,14:271-286.
[30] 刘浩, 贾佳, 路彩晨, 等. 则克台黄土粒度组分分离及其记录的末次冰期气候波动[J]. 干旱区地理, 2018,41(6):1260-1269.
[30] [ Liu Hao, Jia Jia, Lu Caichen, et al. Multi-components separation of loess grain size in Zeketai and the recorded climate fluctuation during the last glacial period[J]. Arid Land Geography, 2018,41(6):1260-1269. ]
[31] Li D, Li Y, Ma B, et al. Lake-level fluctuations since the Last Glaciation in Selin Co (lake), Central Tibet, investigated using optically stimulated luminescence dating of beach ridges[J]. Environmental Research Letters, 2009,4(4):045204, doi: 10.1088/1748-9326/4/4/045204.
[32] 杜丁丁, Muhammad S, Dembele B, 等. 青藏高原中部色林错湖泊沉积物色度反映末次冰盛期以来区域古气候演化[J]. 干旱区地理, 2019,42(3):551-558.
[32] [ Du Dingding, Muhammad S, Dembele B, et al. Paleoclimatic changes reflected by diffuse reflectance spectroscopy since Last Glacial Maximum from Selin Co Lake sediments, central Qinghai-Tibetan Plateau[J]. Arid Land Geography, 2019,42(3):551-558. ]
文章导航

/