收稿日期: 2019-04-06
修回日期: 2020-06-11
网络出版日期: 2021-04-14
基金资助
甘肃省高等学校创新能力提升项目(2019A-051);甘肃农业大学青年导师扶持基金(GAU-QDFC-2019-03);甘肃省自然科学 基金项目(1606RJZA077);甘肃省自然科学 基金项目(1308RJZA262);国家自然科学基金项目资助(30960264);国家自然科学基金项目资助(31160475)
Simulation and sensitivity analysis of net primary productivity(NPP) of different grassland types
Received date: 2019-04-06
Revised date: 2020-06-11
Online published: 2021-04-14
气候变化问题作为人类社会可持续发展面临的重大挑战,受到国际社会越来越强烈的关注。全球气候变化深刻影响着草地生态系统,定量评估区域和不同类型草地生态系统的生产力,研究其对气候变化的敏感性可以为草地生态系统适应未来气候变化提供基础数据和理论依据。草原综合顺序分类系统(CSCS)将天然草原分为42类(其中中国包含41类),并将其聚合为10个类组。研究利用改进Carnegie-Ames-Stanford Approach (CASA)模型模拟分析中国天然草地2004—2008年的净初级生产力(NPP)并进行系统聚类,分析了草地NPP与影响因子的相关性和敏感程度。结果表明:2004—2008年中国10个草地类组年均NPP均呈现增长趋势,其中亚热带森林草地增长最快,增长率达38.2%。温带湿润草地增长最慢,增长率为14.3%。通过聚类分析将中国41类草原的年均NPP分为3类:第1类NPP值较小,其湿润度级较低,而热量级较高;第2类NPP值较大,其热量级和湿润度级均较高,水热比适宜植被的生长;其余为第3类,其NPP值介于上述两者之间。可见,不同草地类型NPP分布规律与CSCS划分草地类型的湿润度级和热量级密切相关。草地年均NPP与>0 ℃年积温(Σθ)、降水量、湿润度(K)和NDVI的相关性强,与太阳辐射的相关性弱。草地类组NPP平均值对NDVI最敏感,其次为Σθ、K和降水量,敏感性最弱的为太阳辐射。草地NPP对CSCS量化分类的标准Σθ和K较为敏感,改进CASA模型在一定程度上实现了CSCS与草地生产力的耦合。
关键词: 净初级生产力(NPP); 改进CASA模型; 草地类型; 聚类分析; 敏感性分析
张美玲,陈全功,蒋文兰 . 不同草地类型净初级生产力(NPP)模拟及其敏感性分析[J]. 干旱区地理, 2021 , 44(2) : 369 -378 . DOI: 10.12118/j.issn.1000–6060.2021.02.08
As a major challenge to the sustainable development of human society, climate change has attracted increasing attention from the international community. Global climate change significantly affects grassland ecosystems. Quantitative assessment of regional and grassland ecosystem productivity and its sensitivity to climate change could provide basic data on and a theoretical basis for grassland ecosystems adapting to future climate change. The grassland integrated comprehensive sequential classification system (CSCS) divides the natural grassland into 42 classes and aggregates them into 10 super-classes. Using the improved Carnegie-Ames-Stanford Approach (CASA) model, we simulated the net primary productivity (NPP) of natural grasslands in China from 2004 to 2008. A system clustering analysis was also conducted based on the annual average NPP of grassland classes to analyze NPP correlation and sensitivity and its influencing factors. The results show that the NPP showed an increase from 2004 to 2008 for all grassland super-classes. The subtropical forest rapidly increased by 38.2%. The temperate humid grassland slowly increased by 14.3%. The 41 grassland classes of China were clustered into three groups. The NPP of group 1 was low for its low wetness level and high heat level. Group 2 had high NPP for its high wetness and heat level and a suitable moisture and temperature ratio. Others were in group 3. The results indicate that the grassland NPP distribution pattern is related to the wetness and heat level in CSCS. There exists a significant correlation between the annual NPP and annual accumulated temperature greater than zero (Σθ), annual precipitation, wetness (K), and normalized difference vegetation index (NDVI). The correlation between annual NPP and solar radiation was the weakest. NDVI was the most sensitive variable to grassland NPP in China, simulated by the improved CASA model in this study, followed by Σθ, K-values, precipitation, and solar radiation. K-values and Σθ were used for quantitative classification in CSCS, and these two parameters were sensitive to NPP. This study completed the coupling of CSCS and grassland NPP to a certain extent.
[1] | Hicke J A, Asner G P, Randerson J T, et al. Trends in north American net primary productivity derived from satellite observations, 1982—1998[J]. Global Biogeochemical Cycles, 2002,16(2):1019-1040. |
[2] | Guid A, Varela R D, Baldassini P, et al. Spatial and temporal variability in aboveground net primary production of Uruguayan grasslands[J]. Rangeland Ecology & Management, 2014,67:30-38. |
[3] | Potter C, Klooster S, Genovese V. Net primary production of terrestrial ecosystems from 2000 to 2009[J]. Climatic Change, 2012,115:365-378. |
[4] | Haverd V, Raupach M R, Briggs P R, et al. Multiple observation types reduce uncertainty in Australia’s terrestrial carbon and water cycles[J]. Biogeosciences, 2013,10:2011-2040. |
[5] | Foley J A. Numerical models of the terrestrial biosphere[J]. Journal of Biogeography, 1995,22:837-842. |
[6] | Xing X, Xu X, Zhang X. Simulating net primary production of grasslands in northeastern Asia using MODIS data from 2000 to 2005[J]. Journal of Geography Science, 2010,20(2):193-204. |
[7] | 高清竹, 万运帆, 李玉娥, 等. 基于CASA模型的藏北地区草地植被净第一性生产力及其时空格局[J]. 应用生态学报, 2007,18(11):2526-2532. |
[7] | [ Gao Qingzhu, Wan Yunfan, Li Yu’e, et al. Grassland net primary productivity and its spatiotemporal distribution in northern Tibet: A study with CASA model[J]. Chinese Journal of Applied Ecology, 2007,18(11):2526-2532. ] |
[8] | Ren J Z, Hu Z Z, Zhao J, et al. A grassland classification system and its application in China[J]. The Rangeland Journal, 2008,30:199-209. |
[9] | 任继周. 分类、聚类与草原类型[J]. 草地学报, 2008,16(1):4-10. |
[9] | [ Ren Jizhou. Classfication and cluster applicable for grassland type[J]. Acta Agrestia Sinica, 2008,16(1):4-10. ] |
[10] | 梁天刚, 冯琦胜, 黄晓东, 等. 草原综合顺序分类系统研究进展[J]. 草业学报, 2011,20(5):252-258. |
[10] | [ Liang Tiangang, Feng Qisheng, Huang Xiaodong, et al. Review in the study of comprehensive sequential classification system of grassland[J]. Acta Agrestia Sinica, 2011,20(5):252-258. ] |
[11] | 张美玲, 陈全功, 蒋文兰, 等. 基于草原综合顺序分类的改进CASA模型[J]. 中国草地学报, 2011,33(4):5-11. |
[11] | [ Zhang Meiling, Chen Quangong, Jiang Wenlan, et al. An improved CASA model based on comprehensive and sequential classification system of grasslands[J]. Chinese Journal of Grassland, 2011,33(4):5-11. ] |
[12] | 张美玲, 蒋文兰, 陈全功, 等. 基于改进的CASA模型模拟草原综合顺序分类体系各类的最大光能利用率[J]. 草原与草坪, 2012,32(4):60-66. |
[12] | [ Zhang Meiling, Jiang Wenlan, Chen Quangong, et al. Use improved CASA model to estimate the maximum light use efficiency of class in grassland comprehensive and sequential classification system[J]. Grassland and Turf, 2012,32(4):60-66. ] |
[13] | Stow D, Hope A, Mcguire D, et al. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems[J]. Remote Sensing of Environment, 2004,89:281-308. |
[14] | Cenk D, Suha B, Paul J C. Modelling the current and future spatial distribution of NPP in a Mediterranean watershed[J]. International Journal of Applied Earth Observation and Geoinformation, 2011,13:336-345. |
[15] | Privette J L, Myneni R B, Emery W J, et al. Optimal sampling conditions for estimating grassland parameters via reflectance model inversions[J]. IEEE Transactions on Geoscience and Remote Sensing, 1996,34(1):272-284. |
[16] | 侯英雨, 柳钦火, 延昊, 等. 我国陆地植被净初级生产力变化规律及其对气候的响应[J]. 应用生态学报, 2007,18(7):1546-1553. |
[16] | [ Hou Yingyu, Liu Qinhuo, Yan Hao, et al. Variation trends of China terrestrial vegetation net primary productivity and its responses to climate factors in 1982—2000[J]. Chinese Journal of Applied Ecology, 2007,18(7):1546-1553. ] |
[17] | 穆少杰, 李建龙, 陈奕兆, 等. 2001—2010年内蒙古植被覆盖度时空变化特征[J]. 地理学报, 2012,67(9):1255-1268. |
[17] | [ Mu Shaojie, Li Jianlong, Chen Yizhao, et al. Spatial differences of variations of vegetation coverage[J]. Acta Geographica Sinica, 2012,67(9):1255-1268. ] |
[18] | 许洁, 陈惠玲, 商沙沙, 等. 2000—2014年青藏高原植被净初级生产力时空变化及对气候变化的响应[J]. 干旱区地理, 2020,43(3):592-601. |
[18] | [ Xu Jie, Chen Huiling, Shang Shasha, et al. Response of net primary productivity of Tibetan Plateau vegetation to climate change based on CEVSA model[J]. Arid Land Geography, 2020,43(3):592-601. ] |
[19] | 秦景秀, 郝兴明, 张颖, 等. 气候变化和人类活动对干旱区植被生产力的影响[J]. 干旱区地理, 2020,43(1):117-125. |
[19] | [ Qin Jingxiu, Hao Xingming, Zhang Ying, et al. Effects of climate change and human activities on vegetation productivity in arid areas[J]. Arid Land Geography, 2020,43(1):117-125. ] |
[20] | 赵东升, 吴绍洪, 尹云鹤. 气候变化情景下中国自然植被净初级生产力分布[J]. 应用生态学报, 2011,22(4):897-904. |
[20] | [ Zhao Dongsheng, Wu Shaohong, Yi Yunhe. Variation trends of natural vegetation net primary productivity in China under climate change scenario[J]. Chinese Journal of Applied Ecology, 2011,22(4):897-904. ] |
[21] | 陶波, 曹明奎, 李克让, 等. 1981—2000年中国陆地净生态系统生产力空间格局及其变化[J]. 中国科学. D辑: 地球科学, 2006,36(12):1131-1139. |
[21] | [ Tao Bo, Cao Mingkui, Li Kerang, et al. Spatial pattern and it change of net ecosystem production in China from 1981 to 2000[J]. Science China Earth Sciences, 2006,36(12):1131-1139. ] |
[22] | Prince S D, Goward S N. Global primary production: A remote sensing approach[J]. Journal of Biogeography, 1995,22:815-835. |
[23] | 张海龙. 近五年来中国陆地植被净第一性生产力时空变化特征分析[D]. 南京: 南京师范大学, 2006. |
[23] | [ Zhang Hailong. The feature analysis on China’s terrestrial NPP spatial-temporal change in recent five years[D]. Nanjing: Nanjing Normal University, 2006. ] |
[24] | 刘广. 京津冀地区森林植被净初级生产力遥感估算研究[D]. 北京: 北京林业大学, 2008. |
[24] | [ Liu Guang. Estimation of forest net primary production of Jing-Jin-Ji region based on remote sensing[D]. Beijing: Beijing Forestry University, 2008. ] |
[25] | 李贵才. 基于MQDIS数据和光能利用率模型的中国陆地净初级生产力估算研究[D]. 北京: 中国科学院遥感应用研究所, 2004. |
[25] | [ Li Guicai. Estimation of chinese terrestrial net primary production using LUE model and MODIS data[D]. Beijing: Institute of Remote Sensing Applications, Chinese Academy of Sciences, 2004. ] |
[26] | 王松, 耿元波, 母悦. 典型草原净初级生产力对气候变化响应的模拟[J]. 草业学报, 2016,25(12):4-13. |
[26] | [ Wang Song, Geng Yuanbo, Mu Yue. Responses of aboveground net primary productivity of the typical steppe to climate change: A simulation based on the CENTURY model[J]. Acta Agrestia Sinica, 2016,25(12):4-13. ] |
[27] | Eisfelder C, Klein I, Niklaus M, et al. Net primary productivity in Kazakhstan, its spatio-temporal patterns and relation to meteorological variables[J]. Journal of Arid Environments, 2014,103:17-30. |
[28] | Zhang M L, Lal R, Zhao Y Y, et al. Estimating net primary production of natural grassland and its spatio-temporal distribution in China[J]. Science of the Total Environment, 2016,553:184-195. |
[29] | 黄珏. 中国陆地植被NPP对气候变化响应及其敏感性分析[D]. 南京: 南京信息工程大学, 2011. |
[29] | [ Huang Yu. Response of vegetation net primary (NPP) to climate change in China and sensitivity experiments[D]. Nanjing: Nanjing University of Information Science & Technology, 2011. ] |
[30] | 季劲钧, 黄玫, 刘青. 气候变化对中国中纬度半干旱草原生产力影响机理的模拟研究[J]. 气象学报, 2005,63(3):257-266. |
[30] | [ Ji Jinjun, Huang Mei, Liu Qing. Modeling studies of response mechanism of steppe productivity to climate change in middle latitude semiarid regions in China[J]. Acta Meteorologica Sinica, 2005,63(3):257-266. ] |
[31] | 韩其飞, 陆研, 李超凡. 气候变化对中亚草地生态系统碳循环的影响研究[J]. 干旱区地理, 2018,41(6):1351-1357. |
[31] | [ Han Qifei, Lu Yan, Li Chaofan. Impact of climate change on grassland carbon cycling in Central Asia[J]. Arid Land Geography, 2018,41(6):1351-1357. ] |
[32] | Lagergren F, Grelle A, Lankreijer H, et al. Current carbon balance of the forested area in Sweden and its sensitivity to global change as simulated by Biome-BGC[J]. Ecosystems, 2006,9:894-908. |
/
〈 |
|
〉 |