收稿日期: 2019-10-21
修回日期: 2020-11-23
网络出版日期: 2021-04-14
基金资助
国家重点研发(2019YFA0607100);国家重点研发(2016YFA062302);国家自然科学基金(41671028);中德科学中心项目资助(GZ1213)
Recent hydrological dynamic and its formation mechanism in Hulun Lake catchment
Received date: 2019-10-21
Revised date: 2020-11-23
Online published: 2021-04-14
流域水量平衡变化机制及其效应的认识是理解湖泊水情变化与制定缓解措施的根本依据。针对2000年后呼伦湖持续水位的急剧下降,并考虑到流域监测资料稀缺的实际情况,借助遥感反演降水和蒸散时空数据序列,利用时空模式分解、趋势分析等方法揭示了流域降水时空变化特征及其引起的蒸散效应。结果表明:流域降水变化主要由空间分布及过程强弱互补的2个降水模式决定,这2个模式的变化解释了流域降水变化的67.4%。2000年后2个模式强弱的变化导致了流域整体降水由两侧山区向中部地势平坦区域的转变。流域中部受地形及气象条件影响,相比两侧山区产流效率偏低。因而降水空间分配的改变形成了更有利于增加陆面蒸散的供水条件,导致了流域蒸散占降水比重上升到较高水平。蒸散变化强度及趋势的时空特征分析也进一步确认了以上现象,这种降水模式的变化及其效应直接导致了流域水量平衡中可供产流的净雨量减少,是呼伦湖流域近年产流减少的根本原因。2000年后流域冻土消融补给的改变则对呼伦湖极端水情的发生起到了推波助澜的作用。
孙占东,黄群,薛滨 . 呼伦湖近年水情变化原因分析[J]. 干旱区地理, 2021 , 44(2) : 299 -307 . DOI: 10.12118/j.issn.1000–6060.2021.02.01
A comprehensive understanding of the catchment water balance change is critical for evaluating lake hydrological regimes and adaption strategies. The abrupt lake water level decrease in Hulun Lake, Inner Mongolia, China, since 2000 has significantly influenced lake eco-environments. Given the sparse gauging data in the catchment, the study pred-ominantly analyzed remote sensing retrieved precipitation and evapotranspiration (ET) data to reveal the spatial-temporal patterns and their dynamics. The results indicate that signals of large-scale precipitation variations can be well-described using the empirical orthogonal function (EOF). Spatially, the precipitation in the Hulun Lake watershed is dominated by two leading EOF patterns at the basin scale, explaining 67.4% of the total changes in precipitation. The two leading patterns present complementary features of the high-value centers in space. The high-value center in pattern 1 is on mountainous slopes, and the high-value center in pattern 2 is in the middle flat plain region. First, the strengthening in EOF pattern 2 and weakening in EOF pattern 1 resulted in a 10% precipitation decrease, which is far less than the decreasing river discharge. Second, the shift between the precipitation amplitudes of patterns 1 and 2 also triggers changes in the spatial distribution of precipitation over the watershed, increasing precipitation in the central part of the watershed but not in the mountain regions on the two sides of the watershed as usual. Such variation weakened the capacity of total runoff production and triggered an increased ET because of spatial heterogeneity in hydrology. The runoff generation condition in the middle area is not smaller than in the upper areas affected by landform and hydrothermal conditions, causing more water returns to the atmosphere by ET. The dynamics and trend patterns in ET confirm this effect. The long-term impact of such changes is an increasing ET to precipitation ratio and decreasing precipitation to runoff generation ratio. Thus, the change in the relationship between precipitation and ET is the principal cause of reduced river runoff and hydrological extremes in the terminal lake during the past decades, impacted by regional climate warming and drying. The ET to precipitation (ET/P) ratio has reached a relatively high value since the early 1990s but did not result in a hydrological extreme. Located on the southern edge of the permafrost zone of the Eurasian continent, the recharge from the permafrost degradation caused by climate warming has offset part of the river channel water deficit before 1999. However, when the recharge effect of permafrost degradation vanished after 2000, river discharge started a fast drop period, causing a sharp decrease in the lake water level since 2000. Therefore, the significant changes in the recharge from the permafrost degradation have worsened the hydrological extremes of the lake.
[1] | Dommenget D, Latif M. A cautionary note on the interpretation of EOFs[J]. Journal of Climate, 2002,15:216-225. |
[2] | Sivapalan M K, Takeuchi S W, Franks V K, et al. IAHS decade on predictions in ungauged basins (PUB), 2003—2012: Shaping an exciting future for the hydrological sciences[J]. Hydrological Science Journal, 2003,48:857-880. |
[3] | Huntington T G. Evidence for intensification of the global water cycle: Review and synjournal[J]. Journal of Hydrology, 2006,319:83-95. |
[4] | Beven K J. Uniqueness of place and the representation of hydrological processes[J]. Hydrology and Earth System Sciences, 2000,4:203-213. |
[5] | Tao Shengli, Fang Jingyun, Zhao Xia, et al. Rapid loss of lakes on the Mongolian Plateau[J]. Proceedings of the National Academy of Sciences, 2015,112:2281-2286. |
[6] | Yang Xiankun, Lyu Xixi. Drastic change in China’s lakes and reservoirs over the past decades[J]. Scientific Reports, 2014,4:1-10. |
[7] | 万华伟, 康峻, 高帅环, 等. 呼伦湖水面动态变化遥感监测及气候因素驱动分析[J]. 中国环境科学, 2016,36(3):894-898. |
[7] | [ Wan Huawei, Kang Jun, Gao Shuaihuan, et al. Study on dynamic change of Hulun Lake water area and climate driving force analysis[J]. China Environmental Science, 2016,36(3):894-898. ] |
[8] | 王志杰, 李畅游, 李卫平, 等. 内蒙古呼伦湖水量平衡计算与分析[J]. 湖泊科学, 2012,24(2):273-281. |
[8] | [ Wang Zhijie, Li Changyou, Li Weiping, et al. Calculation and analysis of water balance in Lake Hulun, Inner Mongolia[J]. Journal of Lake Science, 2012,24(2):273-281. ] |
[9] | 秦伯强, 王苏民. 呼伦湖的近期扩张及其与全球气候变化的关系[J]. 海洋与湖沼, 1994,25(3):280-287. |
[9] | [ Qin Boqiang, Wang Sumin. The recent expansion of Hulun Lake and its relation to warning global climate[J]. Oceanologia et Limnologia Sinica, 1994,25(3):280-287. ] |
[10] | 赵慧颖, 乌力吉, 郝文俊. 气候变化对呼伦湖湿地及其周边地区生态环境演变的影响[J]. 生态学报, 2008,28(3):1064-1071. |
[10] | [ Zhao Huiying, Wu Liji, Hao Wenjun. Influences of climate change to ecological and environmental evolvement in the Hulun Lake wetland and its surrounding areas[J]. Acta Ecologica Sinica, 2008,28(3):1064-1071. ] |
[11] | 赵宗慈, 罗勇. 21世纪中国东北地区气候变化预估[J]. 气象与环境学报, 2007,23(3):1-4. |
[11] | [ Zhao Zongci, Luo Yong. Projections of climate change over northeastern China for the 21st century[J]. Journal of Meteorology and Environment, 2007,23(3):1-4. ] |
[12] | 杨久春, 张树文. 近50年来呼伦湖水系土地利用/覆被变化及其生态环境效应[J]. 干旱区资源与环境, 2009,23(2):41-46. |
[12] | [ Yang Jiuchun, Zhang Shuwen. Land use/cover change and its eco-environmental effects in Hulun-Lake Basin during the past 50 years[J]. Journal of Arid Land Resources and Environment, 2009,23(2):41-46. ] |
[13] | 李翀, 马巍, 史晓新, 等. 呼伦湖水位、盐度变化(1961—2002年)[J]. 湖泊科学, 2006,18(1):13-20. |
[13] | [ Li Chong, Ma Wei, Shi Xiaoxin, et al. Reconstruction of the hydrology series and simulation of salinity in ungauged Lake Hulun[J]. Journal Lake Science, 2006,18(1):13-20. ] |
[14] | Sun Zhandong, Groll Michael, Opp Christian. Lake-catchment interactions and their responses to hydrological extremes[J]. Quaternary International, 2018,475:1-3. |
[15] | 李晓东, 赵慧芳, 汪关信, 等. 流域水热条件和植被状况对青海湖水位的影响[J]. 干旱区地理, 2019,42(3):499-508. |
[15] | [ Li Xiaodong, Zhao Huifang, Wang Guanxin, et al. Influence of watershed hydrothermal conditions and vegetation status on lake level of Qinghai Lake[J]. Arid Land Geography, 2019,42(3):499-508. ] |
[16] | 朱刚, 高会军, 曾光. 近35 a来新疆干旱区湖泊变化及原因分析[J]. 干旱区地理, 2015,38(1):103-110. |
[16] | [ Zhu Gang, Gao Huijun, Zeng Guang. Lake change research and reasons analysis in Xinjiang arid regions during the past 35 years[J]. Arid Land Geography, 2015,38(1):103-110. ] |
[17] | Wagenner T, Sivapalan M, Troch P A, et al. The future of hydrology: An evolving science for a changing world[J]. Water Resources Research, 2010,46:W05301, doi: 10.1029/2009WR008906. |
[18] | Birkett C M, Mason I M. A new global lakes database for a remote-sensing program studying climatically sensitive large lakes[J]. Journal of Great Lakes Research, 1995,21(3):307-318. |
[19] | Kawanishi T H, Kuroiwa M, Kojima K, et al. Rain profiling algorithm for TRMM precipitation radar data[J]. Advance in Space Research, 2000,25(5):969-972. |
[20] | Mi Q Z, Zhao M S, Running S W. Improvements to a MODIS global terrestrial evapotranspiration algorithm[J]. Remote Sensing of Environment, 2011,115(8):1781-1800. |
[21] | Zhang K, Kimball J S, Nemani R R, et al. A continuous satellite-derived global record of land surface evapotranspiration from 1983 to 2006[J]. Water Resources Research, 2010,46:1-21. |
[22] | 邹磊, 余江游, 夏军, 等. 基于SPEI的渭河流域干旱时空变化特征分析[J]. 干旱区地理, 2020,43(2):329-338. |
[22] | [ Zou Lei, Yu Jiangyou, Xia Jun, et al. Temporal-spatial variation characteristics of drought in the Weihe River Basin based on SPEI[J]. Arid Land Geography, 2020,43(2):329-338. ] |
[23] | Xu C Y, Singh V P. Evaluation of three complementary relationship evapotranspiration models by water balance approach to estimate actual regional evapotranspiration in different climatic regions[J]. Journal of Hydrology, 2005,308(1-4):105-121. |
[24] | Lorenz E. Climate change as a mathematical problem[J]. Journal of Applied Meteorology, 1970,9:325-329. |
[25] | Brutsaert W, Parlange M B. Hydrologic cycle explains the evaporation paradox[J]. Nature, 1998,396(6706):30. |
[26] | 秦豪君, 韩永翔. 近56 a蒙古高原草原地上净初级生产力变化[J]. 干旱区地理, 2019,42(4):914-922. |
[26] | [ Qin Haojun, Han Yongxiang. Change of above ground net primary productivity of grassland over the Mongolian Plateau in recent 56 years[J]. Arid Land Geography, 2019,42(4):914-922. ] |
[27] | 代海燕, 李丹, 娜日苏, 等. 内蒙古干湿环境演变与地区生态建设优势气候背景分析[J]. 干旱区地理, 2019,42(4):745-752. |
[27] | [ Dai Haiyan, Li Dan, Na Risu, et al. Dry and wet environment evolution and climatic background analysis of regional ecological construction in Inner Mongolia[J]. Arid Land Geography, 2019,42(4):745-752. ] |
[28] | 金会军, 于少鹏, 吕兰芝, 等. 大小兴安岭多年冻土退化及其趋势初步评估[J]. 冰川冻土, 2006,28(4):467-476. |
[28] | [ Jin Huijun, Yu Shaopeng, Lyu Lanzhi, et al. Degradation of permafrost in the Da and Xiao Xingan Mountains, northeast China, and preliminary assessment of its trend[J]. Journal of Glaciology and Geocryology, 2006,28(4):467-476. ] |
/
〈 |
|
〉 |