基于SCS-CN模型的半干旱黄土高原区秸秆炭覆盖集雨垄径流预测
收稿日期: 2019-11-27
修回日期: 2020-05-11
网络出版日期: 2021-03-09
基金资助
国家自然科学基金项目(41661059);国家自然科学基金项目(41461062)
Runoff estimation of ridge-furrow rainwater harvesting with maize straw biochar application based on soil conservation service curve number (SCS-CN) model in semiarid regions of China
Received date: 2019-11-27
Revised date: 2020-05-11
Online published: 2021-03-09
垄沟集雨种植是缓解我国半干旱黄土高原区干旱、水土流失和土壤侵蚀的主要雨养农业技术。小流域水文模拟通常采用径流曲线数(Soil conservation service curve number,SCS-CN)模型。在标准SCS-CN模型中,由于径流曲线数CN值取值未考虑土壤水分动态变化,导致径流预测产生不合理的突变。以甘肃省定西市垄沟微型生物炭集雨垄为研究对象,根据实测降雨-径流数据,采用修正曲线数(Modified curve number,MoCN)法改进标准SCS-CN模型。结果表明:(1) 随集雨垄垄宽增加(垄坡减小),标准SCS-CN模型和MoCN模型的CN值增加,随生物炭覆盖量增加,标准SCS-CN模型和MoCN模型的CN值减小;(2) MoCN模型的CN值高于标准SCS-CN模型;(3) MoCN模型的纳什效率系数(Nash-sutcliffe coefficient)较标准SCS-CN模型提高40%~275%,相关系数(Correlation coefficient)较标准SCS-CN模型提高1%~20%。修正曲线数MoCN模型能有效提高模型模拟精度,可为我国半干旱黄土高原区垄沟集雨种植系统地表径流预测及水土保持提供参考。
周旭姣,王琦,张登奎,王小赟,赵武成,赵晓乐,雷俊 . 基于SCS-CN模型的半干旱黄土高原区秸秆炭覆盖集雨垄径流预测[J]. 干旱区地理, 2021 , 44(1) : 99 -108 . DOI: 10.12118/j.issn.1000–6060.2021.01.11
Ridge-furrow rainwater harvesting (RFRH) planting is the main rain-fed agricultural technology to address drought, water loss, and soil erosion in the Loess Plateau of central Gansu Province, China. Selecting suitable runoff estimation can effectively improve the utilization of water resources in this region. This paper analyzes the feasibility of the soil conservation service curve number (SCS-CN) model by considering the ridges with maize straw biochar application as the research object in the RFRH system. The runoff curve number (CN), as a basic input parameter of the SCS-CN model, is significantly affected by the antecedent moisture condition (AMC). The CN values, as categorical variables of three AMCs, do not consider the dynamic process of soil moisture between drought and wetness resulting in unreasonable sudden jumps in runoff estimation for the original development of the SCS-CN model. Thus, the modified curve number (MoCN) method proposed by Wang has been made to correct CN value based on continuous function between CN and AMC. The results showed that: (1) The CN values for the MoCN model is higher than the CN values for the SCS-CN model because the AMC value of the MoCN model is different from the SCS-CN model. (2) The runoff discharge measured and estimated by the MoCN model achieved relatively better agreement. Compared with the standard SCS-CN model, the Nash-Sutcliffe coefficient (Ef) of the MoCN model increased from 40% to 275%, and the correlation coefficient (r) of the MoCN model increased from 1% to 20%. Thus, the runoff estimation by the MoCN model is more reasonable and feasible in the RFRH system. This study provides a reference for an efficient utilization of water resources and soil and water conservation in this region.
[1] | 廉陆鹞, 刘滨辉. 近58 a我国西北地区干期与湿期变化特征[J]. 干旱区地理, 2019,42(6):1301-1309. |
[1] | [ Lian Luyao, Liu Binhui. Change characteristics of dry and wet spells in northwest China during the past 58 years[J]. Arid Land Geography, 2019,42(6):1301-1309. ] |
[2] | 王凤娇, 梁伟, 傅伯杰, 等. 近年来的黄土高原耕地时空变化与口粮安全耕地数量分析[J]. 干旱区地理, 2020,43(1):161-171. |
[2] | [ Wang Fengjiao, Liang Wei, Fu Bojie, et al. Spatial and temporal changes of cultivated land and quantitative analysis of ration safe cultivated land on the Loess Plateau in recent years[J]. Arid Land Geography, 2020,43(1):161-171. ] |
[3] | 杨朝飞. 中国土地退化及其防治对策[J]. 中国环境科学, 1997,17(2):13-17. |
[3] | [ Yang Chaofei. Land degradation and its control strategies in China[J]. China Environmental Science, 1997,17(2):13-17. ] |
[4] | Li X Y, Gong J D, Wei X H. In-situ rainwater harvesting and gravel mulch combination for corn production in the dry semi-arid region of China[J]. Journal of Arid Environments, 2000,46(4):371-382. |
[5] | Hu Q, Pan F, Pan X, et al. Effects of a ridge-furrow micro-field rainwater-harvesting system on potato yield in a semi-arid region[J]. Field Crops Research, 2014,166:92-101. |
[6] | 张欣, 李志涛, 陈秋实, 等. 地膜使用年限对遵义市烟田土壤和烟叶邻苯二甲酸酯累积的影响[J]. 应用生态学报, 2018,29(10):3311-3318. |
[6] | [ Zhang Xin, Li Zhitao, Chen Qiushi, et al. Effects of mulching duration on PAEs accumulation in soil and tobacco leaves in Zunyi, China[J]. Chinese Journal of Applied Ecology, 2018,29(10):3311-3318. ] |
[7] | 刘玉学, 刘微, 吴伟祥, 等. 土壤生物质炭环境行为与环境效应[J]. 应用生态学报, 2009,20(4):977-982. |
[7] | [ Liu Yuxue, Liu Wei, Wu Weixiang, et al. Environmental behavior and effect of biomass-derived black carbon in soil: A review[J]. Chinese Journal of Applied Ecology, 2009,20(4):977-982. ] |
[8] | 潘全良, 陈坤, 宋涛, 等. 生物炭及炭基肥对棕壤持水能力的影响[J]. 水土保持研究, 2017,24(1):115-121. |
[8] | [ Pan Quanliang, Chen Kun, Song Tao, et al. Influences of biochar and biochar-based compound fertilizer on soil water retention in brown soil[J]. Research of Soil and Water Conservation, 2017,24(1):115-121. ] |
[9] | 王红兰, 唐翔宇, 张维, 等. 施用生物炭对紫色土坡耕地耕层土壤水力学性质的影响[J]. 农业工程学报, 2015,31(4):107-112. |
[9] | [ Wang Honglan, Tang Xiangyu, Zhang Wei, et al. Effects of biochar application on tilth soil hydraulic properties of slope cropland of purple soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015,31(4):107-112. ] |
[10] | 张光义, 夏军, 张翔, 等. 具有空间分布的超渗产流模型[J]. 人民黄河, 2007,29(12):18-20. |
[10] | [ Zhang Guangyi, Xia Jun, Zhang Xiang, et al. The model of overpermeability yield flow with spatial distribution[J]. Yellow River, 2007,29(12):18-20. ] |
[11] | 王瑾杰, 丁建丽, 张喆, 等. 干旱区降雨、融雪混合补给下的径流模拟研究——以博尔塔拉河上游流域为例[J]. 干旱区地理, 2016,39(6):1238-1246. |
[11] | [ Wang Jinjie, Ding Jianli, Zhang Zhe, et al. Simulation of runoff of arid area with rainfall and snowmelt based on GF-1 satellite: A case of Bortala River[J]. Arid Land Geography, 2016,39(6):1238-1246. ] |
[12] | 李盈盈, 刘康, 胡胜, 等. 陕西省子午岭生态功能区水源涵养能力研究[J]. 干旱区地理, 2015,38(3):636-642. |
[12] | [ Li Yingying, Liu Kang, Hu Sheng, et al. Water conservation function of Ziwuling ecological area in Shaanxi Province[J]. Arid Land Geography, 2015,38(3):636-642. ] |
[13] | Yuan Y, Nie W, Mccutcheon S C, et al. Initial abstraction and curve numbers for semiarid watersheds in southeastern Arizona[J]. Hydrological Processes, 2014,28(3):774-783. |
[14] | Shi Z H, Chen L D, Fang N F, et al. Research on the SCS-CN initial abstraction ratio using rainfall-runoff event analysis in the Three Gorges Area, China[J]. CATENA, 2009,77(1):1-7. |
[15] | 周翠宁, 任树梅, 闫美俊. 曲线数值法(SCS模型)在北京温榆河流域降雨-径流关系中的应用研究[J]. 农业工程学报, 2008,24(3):87-90. |
[15] | [ Zhou Cuining, Ren Shumei, Yan Meijun. Application of SCS model to simulate rainfall-runoff relationship in Wenyu River Basin in Beijing[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2008,24(3):87-90. ] |
[16] | Mishra S K, Singh V P. A relook at NEH-4 curve number data and antecedent moisture condition criteria[J]. Hydrological Processes, 2010,20(13):2755-2768. |
[17] | 王永利, 侯琼, 云文丽, 等. 基于降水距平的内蒙古地区马铃薯干旱指标研究[J]. 干旱地区农业研究, 2018,36(3):224-229. |
[17] | [ Wang Yongli, Hou Qiong, Yun Wenli, et al. Research on the drought index of potato based on precipitation anomaly in Inner Mongolia[J]. Agricultural Research in the Arid Areas, 2018,36(3):224-229. ] |
[18] | Soil Conservation Service. National engineering handbook, Section 4: Hydrology[R]. Washington D C: US Department of Agriculture Soil Conservation Service, 1972. |
[19] | Mishra S K, Sahu R K, Eldho T I, et al. An improved Ia-S relation incorporating antecedent moisture in SCS-CN methodology[J]. Water Resources Management, 2006,20(5):643-660. |
[20] | Wang X, Shang S, Yang W, et al. Simulation of an agricultural watershed using an improved curve number method in SWAT[J]. Transactions of the ASABE, 2008,51(4):1323-1339. |
[21] | Parasuraman S B, Jain M K, Mishra S K, et al. Enhanced runoff curve number model incorporating storm duration and a nonlinear Ia-S relation[J]. Journal of Hydrologic Engineering, 2006,11(6):631-635. |
[22] | Arnold J G, Srinivasan R, Muttiah R S, et al. Large area hydrologic modeling and assessment part I: Model development[J]. Journal of American Water Resources Association, 1998,34(1):73-79. |
[23] | Nash J E, Sutclffe J V. River flow forecasting through conceptual models: Part I. A discussion of principles[J]. Journal of Hydrology, 1970,10(3):282-290. |
[24] | 岳健敏, 张金池, 庄家尧, 等. 南京毛竹林小流域SCS-CN方法初损率λ取值研究[J]. 中国水土保持科学, 2015,13(5):9-15. |
[24] | [ Yue Jianmin, Zhang Jinchi, Zhuang Jiayao, et al. Calibration of SCS-CN initial abstraction ratio of a small watershed in Nanjing bamboo forest[J]. Science of Soil and Water Conservation, 2015,13(5):9-15. ] |
[25] | 曹颖, 张光辉, 唐科明, 等. 地表覆盖对坡面流流速影响的模拟试验[J]. 山地学报, 2011,29(6):654-659. |
[25] | [ Cao Ying, Zhang Guanghui, Tang Keming, et al. Experiment on the effect of simulated surface cover on the overland flow velocity[J]. Journal of Mountain Science, 2011,29(6):654-659. ] |
[26] | 张兴奇, 徐鹏程, 顾璟冉. SCS模型在贵州省毕节市石桥小流域坡面产流模拟中的应用[J]. 水土保持通报, 2017,37(3):321-328, 333. |
[26] | [ Zhang Xingqi, Xu Pengcheng, Gu Jingran. Application of SCS model to simulate runoff in slop field at Shiqiao small watershed in Bijie City of Guizhou Province[J]. Bulletin of Soil and Water Conservation, 2017,37(3):321-328, 333. ] |
[27] | 吴昱, 刘慧, 杨爱峥, 等. 黑土区坡耕地施加生物炭对水土流失的影响[J]. 农业机械学报, 2018,49(5):287-294. |
[27] | [ Wu Yu, Liu Hui, Yang Aizheng, et al. Influences of biochar supply on water and soil erosion in slopping farm-land of black soil region[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018,49(5):287-294. ] |
[28] | 符素华, 王红叶, 王向亮, 等. 北京地区径流曲线数模型中的径流曲线数[J]. 地理研究, 2013,32(5):797-807. |
[28] | [ Fu Suhua, Wang Hongye, Wang Xiangliang, et al. The runoff curve number of SCS-CN method in Beijing[J]. Geographical Research, 2013,32(5):797-807. ] |
[29] | 郭晓军, 王道杰, 庄建琦. SCS模型在干热河谷区坡面产流模拟中的应用[J]. 中国水土保持科学, 2010,8(5):14-18. |
[29] | [ Guo Xiaojun, Wang Daojie, Zhuang Jianqi. Application of SCS model on simulation of the slope-runoff process in dry-hotvalley[J]. Science of Soil and Water Conservation, 2010,8(5):14-18. ] |
[30] | 焦平金, 许迪, 于颖多, 等. 递推关系概化前期产流条件改进SCS模型[J]. 农业工程学报, 2015,31(12):132-137. |
[30] | [ Jiao Pingjin, Xu Di, Yu Yingduo, et al. Conceptualizing antecedent runoff condition using recurrence relation to modify SCS model[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015,31(12):132-137. ] |
[31] | Neave M, Rayburg S. A field investigation into the effects of progressive rainfall-induced soil seal and crust development on runoff and erosion rates: The impact of surface cover[J]. Geomorphology, 2007,87(4):378-390. |
/
〈 | 〉 |