气候与水文

海冰和海温对西北地区中部6月降水异常的协同影响

展开
  • 中国气象局旱区特色农业气象灾害监测预警与风险管理重点实验室,宁夏 银川 750002
王素艳(1974-),女,宁夏中宁人,正高级工程师,主要从事气候与气候变化研究. E-mail: nxwsy_cn@sina.com

收稿日期: 2019-12-06

  修回日期: 2020-08-13

  网络出版日期: 2021-03-09

基金资助

宁夏青年拔尖人才培养工程;气象预报业务关键技术发展专项(YBGJXM201906-07);国家自然科学基金(41965001)

Synergistic effects of ice and sea surface temperature on the precipitation abnormal in June in the central part of northwest China

Expand
  • Key Laboratory for Meteorological Disaster Monitoring and Early Warning and Risk Management of Characteristic Agriculture in Arid Regions, Yinchuan 750002, Ningxia, China

Received date: 2019-12-06

  Revised date: 2020-08-13

  Online published: 2021-03-09

摘要

利用1961年以来美国国家环境预报中心(NCEP)月平均再分析风场、高度场、NOAA重构海表温度以及西北地区中部54个气象站6月逐日降水资料、1979年以来北极10个区域的海冰面积,通过分析2019年6月西北地区中部降水异常的成因,揭示出对该区域6月降水具有显著影响的关键海区海冰面积及时段、北大西洋三极子(NAT)关键影响时段,结合厄尔尼诺-南方涛动(ENSO)事件,分析其协同作用及影响机制。结果表明:1990年以来春季3—4月楚科奇海海冰面积异常容易激发欧亚中高纬度EU2(欧亚2型)遥相关型(即夏季EU(欧亚)遥相关型),有利于西北地区中部降水异常,1992年以来春季NAT对EU2遥相关型有明显影响,但其影响小于楚科奇海海冰面积的影响;当楚科奇海海冰面积偏少和NAT正位相(海冰面积偏多和NAT负位相)协同作用时,西北地区中部降水偏多(偏少)的概率明显增大;ENSO事件对西北地区中部6月降水无明显直接影响,但厄尔尼诺事件次年使得副热带高压异常偏强、偏西。2019年楚科奇海海冰面积异常偏少,春季NAT异常偏强,两者协同作用下使得EU2遥相关型正异常(“+ - + -”),尤其使得贝加尔湖附近的阻塞高压异常偏强,鄂霍次克海和乌拉尔山附近低压异常深厚,厄尔尼诺事件使副热带高压异常偏强、偏西,将西太平洋的水汽输送至北太平洋,与鄂霍次克海附近的深厚低压相接,充足的冷空气和水汽导致西北地区中部出现异常降水。研究成果可为短期气候预测提供依据,同时,气-冰-海之间的相互作用需要更进一步研究。

本文引用格式

王素艳,纳丽,王璠,朱晓炜,李欣,马阳,张雯 . 海冰和海温对西北地区中部6月降水异常的协同影响[J]. 干旱区地理, 2021 , 44(1) : 63 -72 . DOI: 10.12118/j.issn.1000–6060.2021.01.07

Abstract

Located at the hinterland of East Asia and the edge of Qinghai-Tibet Plateau, the central part of northwest China has complex terrain and diverse climate types. Most of the areas are rain-fed agriculture, which is also the most vulnerable area of the ecological environment. June is the critical period for summer grain crop growth, which has a great influence on climate. In June 2019, the amount and days of precipitation in most of the central part of northwest China were more accompanied by frequent heavy rainfall. At the same time, there was a rare continuous low temperature and rainy weather. Thus, based on the monthly average height field, wind field reanalysis data of the National Centers for Environmental Prediction (NCEP), NOAA reconstructed sea surface temperature since 1961, the daily precipitation data of 54 weather stations in the central part of northwest China in June, and the sea ice area of ten regions in the Arctic since 1979, the causes of precipitation anomaly in the central part of northwest China in June 2019 was analyzed. The key sea ice areas and period, the key periods of the North Atlantic Triple (NAT) that have a significant impact on the precipitation in June were investigated. Furthermore, the synergistic effect and influence mechanism between the sea ice areas and the NAT with ENSO event were analyzed. The results showed that the correlation between precipitation and altitude field in the central part of northwest China changed significantly in June. Also, the precipitation was abnormal more when the distribution of height anomaly field in middle and high latitudes was the Eurasian 2 pattern (EU2) teleconnection pattern (i.e., summer EU (Eurasian) teleconnection type) since the 1990s. The precipitation was more when the EU2 is positive phase “+ - + -”, and vice versa. The influence of the sea ice area in the Chukchi Sea from March to April and the NAT in spring on 500 hPa altitude field changed significantly since 1990 and 1992, respectively. It had a significant influence on the EU2 teleconnection pattern, but the influence of NAT is less than that of the Chukchi Sea ice area. When the sea ice area was less and NAT positive phase (sea ice area more and NAT negative phase), the probability of more (less) precipitation in the central part of northwest China increased obviously. ENSO events had no obvious direct impact on the precipitation, but the subtropical high was anomaly stronger and westward in the next year of the El Nino event. The Chukchi Sea ice area was abnormally small with a strong positive phase NAT in spring in 2019, which made the EU2 teleconnection positive anomaly. El Nino event transported water vapor from the Western Pacific Ocean to the North Pacific Ocean, which cooperated with EU2 teleconnection made the cold air and water vapor were enough to make abnormal precipitation in the central part of northwest China. The research results could provide a basis for short-term climate prediction. While all the relationship between the precipitation in June, sea ice area from March to April, NAT in spring, and altitude field in the central part of northwest China had changed since the 1990s, then the interaction of them (air-ice-sea) needs further study.

参考文献

[1] 黄鹏. 河套地区夏季极端降水事件统计及其环流特征分析[D]. 青岛: 中国海洋大学, 2013.
[1] [ Huang Peng. Anlysis on summer extreme precipitation events and their circulations in the Hetao Area[D]. Qingdao: Ocean University of China, 2013. ]
[2] 赵庆云, 张武, 唐杰, 等. 西北东部气候异常特征及其对冬季高原感热的响应[J]. 中国沙漠, 2006,26(3):415-420.
[2] [ Zhao Qingyun, Zhang Wu, Tang Jie, et al. Extreme climate within eastern part of northwest China and its response on sensible heat over Qinghai-Tibetan Plateau[J]. Journal of Desert Research, 2006,26(3):415-420. ]
[3] 王鹏祥. 西北地区干湿演变及其成因分析[D]. 南京: 南京信息工程大学, 2008.
[3] [ Wang Pengxiang. Aridity-wetness evolution and its influence mechanism in northwest China[D]. Nanjing: Nanjing University of Information Science & Technology, 2008. ]
[4] 唐镭. 西北地区夏季干湿年的环流异常及水汽输送的研究[D]. 南京: 南京信息工程大学, 2010.
[4] [ Tang Lei. Analysis of circulation anomaly and water vapor transport of summer aridity-wetness in northwest China[D]. Nanjing: Nanjing University of Information Science & Technology, 2010. ]
[5] 范伶俐, 徐峰, 徐华, 等. 春季/夏季型El Ni?o对中国夏季降水变化的影响[J]. 大气科学学报, 2018,41(6):819-828.
[5] [ Fan Lingli, Xu Feng, Xu Hua, et al. Spring and summer El Ni?o events and their influences on summer precipitation in China[J]. Transactions of Atmospheric Sciences, 2018,41(6):819-828. ]
[6] 张仲杰. 中国西北地区东部降水的气候变化特征及其影响因素[D]. 兰州: 兰州大学, 2016.
[6] [ Zhang Zhongjie. Climate change characteristics and influencing factors of precipitation in the eastern part of northwest China[D]. Lanzhou: Lanzhou University, 2016. ]
[7] 杨金虎, 靳荣, 刘晓云, 等. 西北地区东部汛期降水季节内分布特征分析[J]. 干旱区地理, 2017,40(5):21-29.
[7] [ Yang Jinhu, Jin Rong, Liu Xiaoyun, et al. Inter-seasonal distribution pattern of rainy season precipitation in the east region of northwest China[J]. Arid Land Geography, 2017,40(5):21-29. ]
[8] 李耀辉, 李栋梁. ENSO循环对西北地区夏季气候异常的影响[J]. 高原气象, 2004,23(6):930-935.
[8] [ Li Yaohui, Li Dongliang. Effects of ENSO cycle on the summer climate anomaly over northwest China[J]. Plateau Meteorology, 2004,23(6):930-935. ]
[9] 张仲杰, 康景芬, 王士新, 等. 西北地区东部降水异常的大气环流及水汽特征[J]. 沙漠与绿洲气象, 2019,13(1):87-92.
[9] [ Zhang Zhongjie, Kang Jingfen, Wang Shixin, et al. Atmosphere circulation and water vapor characteristics of the precipitation anomaly in eastern part of northwest China[J]. Desert and Oasis Meteorology, 2019,13(1):87-92. ]
[10] 王雅琦, 冯娟, 李建平, 等. 西北地区东部夏季降水年际变化特征及其与环流的关系[J]. 高原气象, 2020,39(2):290-300.
[10] [ Wang Yaqi, Feng Juan, Li Jianping, et al. Interannual variation of summer precipitation in the eastern of northwest China and its relationship with circulation[J]. Plateau Meteorology, 2020,39(2):290-300. ]
[11] 李潇, 李栋梁, 王颖. 中国西北东部汛期降水对青藏高原东部春季感热在准3a周期上的响应[J]. 气象学报, 2015,73(4):737-748.
[11] [ Li Xiao, Li Dongliang, Wang Ying. Quasi 3-year period response of the rainy season precipitation over the eastern parts of northwest China to the spring sensible heat flux over the eastern part of the Tibetan Plateau[J]. Journal of Meteorology, 2015,73(4):737-748. ]
[12] 江志红, 杨金虎, 张强. 春季印度洋SSTA对夏季中国西北东部极端降水事件的影响研究[J]. 热带气象学报, 2009,25(6):641-648.
[12] [ Jiang Zhihong, Yang Jinhu, Zhang Qiang. Influence study on spring Indian ocean SSTA to summer extreme precipitation events over the eastern part of northwest China[J]. Journal of Tropical Meteorology, 2009,25(6):641-648. ]
[13] 杨金虎, 江志红, 白虎志. 夏季西北东部极端降水事件同太平洋SSTA的遥相关[J]. 高原气象, 2008,27(2):321-338.
[13] [ Yang Jinhu, Jiang Zhihong, Bai Huzhi. Teleconnection between summer extreme precipitation event of east part of northwest China and Pacific SSTA[J]. Plateau Meteorology, 2008,27(2):321-338. ]
[14] 张冰, 刘宣飞, 郑广芬, 等. 宁夏夏季极端降水日数的变化规律及其成因[J]. 大气科学学报, 2018,41(2):176-185.
[14] [ Zhang Bing, Liu Xuanfei, Zheng Guangfen, et al. Variation of the days of extreme precipitation in Ningxia in summer and its causes[J]. Transactions of Atmospheric Sciences, 2018,41(2):176-185. ]
[15] 魏立新. 北极海冰变化及其气候效应研究[D]. 青岛: 中国海洋大学, 2011.
[15] [ Wei Lixin. Study on the variation of Arctic sea ice and its effect on global climate[D]. Qingdao: Ocean University of China, 2011. ]
[16] Screen J A, Simmonds I. Exploring links between Arctic amplification and mid-latitude weather[J]. Geophysical Research Letters, 2013,40(5):959-964.
[17] Cohen J, Screen J A, Furtado J C, et al. Recent Arctic amplification and extreme mid-latitude weather[J]. Nature Geoscience, 2014,7(9):627-637.
[18] Overland J E, Klaus Dethloff, Francis J A, et al. Nonlinear response of mid-latitude weather to the changing Arctic[J]. Nature Climate Change, 2016,6(11):992-999.
[19] 樊婷婷, 黄菲, 苏洁. 北半球中高纬度大气环流主模态的季节演变及其与北极海冰变化的联系[J]. 中国海洋大学学报(自然科学版), 2012,42(7):19-25.
[19] [ Fan Tingting, Huang Fei, Su Jie. The seasonal march of dominate mode of the mid-high latitude atmosphere circulation in northern hemisphere and the associated Arctic sea ice[J]. Periodical of Ocean University of China (Natural Science Edition), 2012,42(7):19-25. ]
[20] Deser C, Magnusdottir G, Saravanan R, et al. The effects of North Atlantic SST and sea ice anomalies on the winter circulation in CCM3. Part II: Direct and indirect components of the response[J]. Journal of Climate, 2004,17(5):877-889.
[21] 章新平. 北大西洋海温与500 hPa月平均环流的若干统计特征[J]. 新疆大学学报(自然科学版), 1988(4):102-108.
[21] [ Zhang Xinping. Some statistic features of North Atlantic ocean surface temperature and 500 hPa monthly mean circulation[J]. Journal of Xinjiang University (Natural Science Edition), 1988(4):102-108. ]
[22] 魏凤英. 现代气候统计诊断与预测技术[M]. 2版. 北京: 气象出版社, 2007.
[22] [ Wei Fengying. Statistical diagnosis and prediction technology of modern climate[M]. 2nd ed. Beijing: China Meteorology Press, 2007. ]
[23] 施能. 气象科研与预报中的多元分析方法[M]. 2版. 北京: 气象出版社, 2002: 21-22.
[23] [ Shi Neng. Multivariate analysis method in meteorological research and forecasting[M]. 2nd ed. Beijing: China Meteorology Press, 2002: 21-22. ]
[24] 卫捷, 张庆云, 陶诗言. 近20年华北地区干旱期大气环流异常特征[J]. 应用气象学报, 2003,14(2):140-151.
[24] [ Wei Jie, Zhang Qingyun, Tao Shiyan. Characteristics of atmospheric circulation anomalies during persistent droughts in north China for last two decades[J]. Journal of Applied Meteorological Science, 2003,14(2):140-151. ]
[25] 陈文. EL Ni?o和LaNi?a事件对东亚冬、夏季风循环的影响[J]. 大气科学, 2002,26(5):595-610.
[25] [ Chen Wen. Impacts of EL Ni?o and La Ni?a on the cycle of the East Asian winter and summer monsoon[J]. Chinese Journal of Atmospheric Sciences, 2002,26(5):595-610. ]
[26] 朱益民, 杨修群, 陈晓颖, 等. ENSO与中国夏季年际气候异常关系的年代际变化[J]. 热带气象学报, 2007,23(2):105-116.
[26] [ Zhu Yimin, Yang Xiuqun, Chen Xiaoying, et al. Interdecadal variation of the relationship between ENSO and summer interannual climate variability in China[J]. Journal of Tropical Meteorology, 2007,23(2):105-116. ]
文章导航

/