极点对称模态分解下陕西气候变化特征及影响因素
收稿日期: 2019-08-15
修回日期: 2019-12-24
网络出版日期: 2021-03-09
基金资助
国家自然科学基金(41877519, 41701592)
Spatiotemporal climate variation and its influencing factors in Shaanxi Province based on extreme-point symmetric mode decomposition
Received date: 2019-08-15
Revised date: 2019-12-24
Online published: 2021-03-09
全球变暖背景下,受人类活动和气候系统波动共同影响,气候要素响应具有非线性、非平稳特征,如何识别气候变化多时间尺度信息,是当前研究的热点话题。基于1970—2017年气温和降水逐日数据,辅以滑动平均、趋势分析和极点对称模态分解(ESMD)等方法,对陕西3大地理单元气候时空特征进行分析,进而探讨不同海区厄尔尼诺指数与气温、降水变化的响应关系。结果表明:1970—2017年,陕北气候变化经历“暖干-冷湿-暖湿”的变化过程;关中和陕南气候在20世纪80—90年代末呈现暖干化,随后增温停滞,降水增多,近期再次呈现暖干化;利用ESMD对陕西气温和降水变化信号进行分解,发现区域气温响应变暖停滞,是受年代波动影响,周期为9.2~11.5 a左右;从趋势项分析,除陕北气温平稳波动之外,关中和陕南气温增速并未减缓;在影响因素上,不同海区海温异常与陕西气温、降水变化相关性存在差异。其中,气温影响主要在中国东部海区,且与NINO A区、黑潮区海温显著正相关;影响降水变化的关键海区在赤道太平洋,即赤道太平洋中部海温异常偏高时,关中和陕南降水呈现下降,而赤道太平洋东部海温异常偏高,陕北降水减少更为明显。
申雨晨,李双双,延军平,武亚群,汪成博 . 极点对称模态分解下陕西气候变化特征及影响因素[J]. 干旱区地理, 2021 , 44(1) : 36 -46 . DOI: 10.12118/j.issn.1000–6060.2021.01.04
Against the background of global warming affected by human activities and climate system fluctuations, climate response is non-linear and nonsmoothed. A hot topic is how to identify multiple-time scale information about climatic change. The spatiotemporal characteristics of climate change were analyzed for three geographical sub-regions of Shaanxi Province by sliding average, trend analysis, and extreme-point symmetric mode decomposition (ESMD) methods, using daily temperature and precipitation data between 1970 and 2017 and then discussing the tele-correlation between sea surface temperature (SST) in 17 different sea areas and the regional temperature and precipitation changes. The main SST indexes included El Niño-Southern Oscillation, Pacific Decadal Oscillation, Atlantic Multi-decadal Oscillation, Quasi-Biennial Oscillation (QBO), and Kuroshio Current SST (KCSST). The results showed that from 1970 to 2017, the mean annual temperature in Shaanxi rose significantly, with step-change points in 1984, 1999, and 2012. In detail, climate change in northern Shaanxi involved warming-drying, cooling-wetting, and warming-wetting, whereas in Guanzhong Plain and southern Shaanxi, there was warming-drying from 1970 to 1999. Since 1999, the regional climate of these two regions exhibited a warming hiatus, and it was not until 2012 that intensified warming and decreasing precipitation have become more obvious. The ESMD of temperature and precipitation signals showed a non-linear upward trend, which implied changes on decadal scales (9.2-11.5 a) in response to the warming hiatus. The temperature increased in Guanzhong Plain and southern Shaanxi, except for a slight decline in northern Shaanxi in 1999—2017. Spatial differences exist in the influencing factors of temperature and precipitation in Shaanxi Province. The SST of eastern China is the dominant influencing factor for annual and decadal temperature variability. Temperatures generally increase in Shaanxi with positive SST anomaly for both NINO A and KCSST. Additionally, positive SST anomalies in the central equatorial Pacific cause decreasing precipitation in both Guanzhong Plain and southern Shaanxi. Less precipitation was expected in northern Shaanxi with increasing positive SST anomalies centered in the eastern equatorial Pacific, commonly known as the East Pacific type of El Niño. The above results could provide insights for the regional response and risk management of extreme precipitation resulting from global climate change. However, it should be noted that the connections between the SST and climate anomalies in Shaanxi Province are not clear. Hence, future work should determine the SST-forced heat and moisture stress anomalies to explain rainfall variations.
[1] | 郑景云, 方修琦, 吴绍洪. 中国自然地理学中的气候变化研究前沿进展[J]. 地理科学进展, 2018,37(1):16-27. |
[1] | [ Zheng Jingyun, Fang Xiuqi, Wu Shaohong. Recent progress of climate change research in physical geography studies from China[J]. Progress in Geography, 2018,37(1):16-27. ] |
[2] | 秦大河. 气候变化科学与人类可持续发展[J]. 地理科学进展, 2014,33(7):874-883. |
[2] | [ Qin Dahe. Climate change science and sustainable development[J]. Progress in Geography, 2014,33(7):874-883. ] |
[3] | 卞娟娟, 郝志新, 郑景云, 等. 1951—2010年中国主要气候区划界线的移动[J]. 地理研究, 2013,32(7):1179-1187. |
[3] | [ Bian Juanjuan, Hao Zhixin, Zheng Jingyun, et al. The shift on boundary of climate regionalization in China from 1951 to 2010[J]. Geographical Research, 2013,32(7):1179-1187. ] |
[4] | IPCC. Climate change 2013: The physical science basis: Working Group I contribution to the fifth assessment report of the Intergovernmental Panel on Climate Change[M]. Cambridge & New York: Cambridge University Press, 2013: 1-8. |
[5] | 郑景云, 尹云鹤, 李炳元. 中国气候区划新方案[J]. 地理学报, 2010,65(1):3-12. |
[5] | [ Zheng Jingyun, Yin Yunhe, Li Bingyuan. A new scheme for climate regionalization in China[J]. Acta Geographica Sinica, 2010,65(1):3-12. ] |
[6] | Hu Y L, Wang S G, Song X P, et al. Precipitation changes in the mid-latitudes of the Chinese mainland during 1960—2014[J]. Journal of Arid Land, 2017,9(6):924-937. |
[7] | 那音太, 秦福莹, 贾根锁, 等. 近54 a蒙古高原降水变化趋势及区域分异特征[J]. 干旱区地理, 2019,42(6):1253-1261. |
[7] | [ Na Yintai, Qin Fuying, Jia Gensuo, et al. Change trend and regional differentiation of precipitation over the Mongolian Plateau in recent 54 years[J]. Arid Land Geography, 2019,42(6):1253-1261. ] |
[8] | 高涛, 谢立安. 50年来中国极端降水趋势与物理成因研究综述[J]. 地球科学进展, 2014,29(5):577-589. |
[8] | [ Gao Tao, Xie Li’an. Study on progress of the trends and physical causes of extreme precipitation in China during the last 50 years[J]. Advances in Earth Science, 2014,29(5):577-589. ] |
[9] | 苑全治, 吴绍洪, 戴尔阜, 等. 1961—2015年中国气候干湿状况的时空分异[J]. 中国科学: 地球科学, 2017,47(11):87-96. |
[9] | [ Yuan Quanzhi, Wu Shaohong, Dai Erfu, et al. Spatio-temporal variation of the wet-dry conditions fiom 1961 to 2015 in China[J]. Science China: Earth Sciences, 2017,47(11):87-96. ] |
[10] | 王冰, 刘启权, 罗琳, 等. 1981—2011年川南山区地温和气温的变化特征[J]. 干旱区地理, 2019,42(6):1322-1329. |
[10] | [ Wang Bing, Liu Qiquan, Luo Lin, et al. Change characteristics of soil surface temperature and air temperature in the mountainous region of southern Sichuan from 1981 to 2011[J]. Arid Land Geography, 2019,42(6):1322-1329. ] |
[11] | 陈颖, 贾孜拉, 拜山. 新疆冬季气温年际异常的主模态及其成因分析[J]. 干旱区地理, 2019,42(2):223-239. |
[11] | [ Chen Ying, Jia Zila, Bai Shan. Annual variation of winter temperature and its causes in Xinjiang[J]. Arid Land Geography, 2019,42(2):223-239. ] |
[12] | Ma L, Li H, Liu T, et al. Abrupt temperature change and a warming hiatus from 1951 to 2014 in Inner Mongolia, China[J]. Journal of Arid Land, 2019,11(2):192-207. |
[13] | 周正朝, 胡娜娜, 周华. 西安市气温和降水变化趋势分析[J]. 干旱区研究, 2012,29(1):27-34. |
[13] | [ Zhou Zhengchao, Hu Nana, Zhou Hua. Analysis on the change trend of temperature and precipitation in Xi’an during the period of 1961—2009[J]. Arid Zone Research, 2012,29(1):27-34. ] |
[14] | 丁一汇, 王会军. 近百年中国气候变化科学问题的新认识[J]. 科学通报, 2016,61(10):1029-1041. |
[14] | [ Ding Yihui, Wang Huijun. Newly acquired knowledge on the scientific issues related to climate change over the recent 100 years in China[J]. Science Bulletin, 2016,61(10):1029-1041. ] |
[15] | 柏玲, 刘祖涵, 陈忠升, 等. 开都河源流区径流的非线性变化特征及其对气候波动的响应[J]. 资源科学, 2017,39(8):1511-1521. |
[15] | [ Bai Ling, Liu Zuhan, Chen Zhongsheng, et al. Runoff nonlinear variation and responses to climate fluctuation in the headwater region of the Kaidu River[J]. Resources Science, 2017,39(8):1511-1521. ] |
[16] | 王金良, 李宗军. 极点对称模态分解方法: 数据分析与科学探索的新途径[M]. 北京: 高等教育出版社, 2015: 25-26. |
[16] | [ Wang Jinliang, Li Zongjun. Extreme-point symmetric mode decomposition method[M]. Beijing: Higher Education Press, 2015: 25-26. ] |
[17] | 赵直, 徐晗. 极点对称模态分解下中国新疆温度变化趋势的区域特征[J]. 地理研究, 2014,33(12):2358-2366. |
[17] | [ Zhao Zhi, Xu Han. The research of temperature variation trends over Xinjiang in China by extreme-point symmetric mode decomposition method[J]. Geographical Research, 2014,33(12):2358-2366. ] |
[18] | Qin Y, Li B, Chen Z, et al. Spatio-temporal variations of nonlinear trends of precipitation over an arid region of northwest China according to the extreme-point symmetric mode decomposition method[J]. International Journal of Climatology, 2018,38(5):2239-2249. |
[19] | 李双双, 延军平, 孔锋, 等. 极点对称模态分解下西安高温天气的趋势特征[J]. 地理研究, 2018,37(1):209-219. |
[19] | [ Li Shuangshuang, Yan Junping, Kong Feng, et al. The nonlinear trends of high temperature weather in Xi’an by extreme-point symmetric mode decomposition method[J]. Geographical Research, 2018,37(1):209-219. ] |
[20] | 孙艺杰, 刘宪锋, 任志远, 等. 1960—2016年黄土高原多尺度干旱特征及影响因素[J]. 地理研究, 2019,38(7):1820-1832. |
[20] | [ Sun Yijie, Liu Xianfeng, Ren Zhiyuan, et al. Spatiotemporal variations of multi-scale drought and its influencing factors the Loess Plateau from 1960 to 2016[J]. Geographical Research, 2019,38(7):1820-1832. ] |
[21] | Xiao M, Zhang Q, Singh V P. Spatiotemporal variations of extreme precipitation regimes during 1961—2010 and possible teleconnections with climate indices across China[J]. International Journal of Climatology, 2017,37(1):468-479. |
[22] | Stepote H, Jones S E O, Fox H, Correlations between extreme atmospheric hazards and global teleconnections: Implications for multihazard resilience[J]. Reviews of Geophysics, 2018,56(1):50-78. |
[23] | Frazier A G, Timm O E, Giambellua T W, et al. The influence of ENSO, PDO and PNA on secular rainfall variations in Hawaii[J]. Climate Dynamics, 2018,51(5-6):2127-2140. |
[24] | Xiao M, Zhang Q, Singh V P. Influences of ENSO, NAO, IOD and PDO on seasonal precipitation regimes in the Yangtze River Basin, China[J]. International Journal of Climatology, 2015,35(12):3556-3567. |
[25] | 刘闻, 曹明明, 宋进喜, 等. 陕西年降水量变化特征及周期分析[J]. 干旱区地理, 2013,36(5):865-874. |
[25] | [ Liu Wen, Cao Mingming, Song Jinxi, et al. Spatio-temporal distribution and temporal periodicity of annual precipitation in Shaanxi Province[J]. Arid Land Geography, 2013,36(5):865-874. ] |
[26] | 何艳芬, 张喨. 陕西省1980—2006年气候变化时空特征研究[J]. 干旱区资源与环境, 2011,25(11):59-63. |
[26] | [ He Yanfen, Zhang Liang. Temporal and spatial characteristics of climatic change from 1980 to 2006 in Shaanxi Province[J]. Journal of Arid Land Resources and Environment, 2011,25(11):59-63. ] |
[27] | 袁莹莹, 殷水清, 谢云, 等. 我国风蚀区风速日变率时空变化特征[J]. 干旱区地理, 2018,41(3):480-487. |
[27] | [ Yuan Yingying, Yin Shuiqing, Xie Yun, et al. Temporal and spatial characteristics of diurnal variations of wind speed in wind erosion areas over China[J]. Arid Land Geography, 2018,41(3):480-487. ] |
[28] | 唐启义. DPS数据处理系统): 实验设计, 统计分析及数据挖掘[M]. 四版. 北京: 科学出版社, 2017: 899. |
[28] | [ Tang Qiyi. DPS data processing system: Experimental design, statistical analysis and data mining[M]. 4th ed. Beijing: Science Press, 2017: 899. ] |
[29] | 庞轶舒. 东亚夏季环流多齿轮耦合特征及其对中国夏季降水异常的影响分析[J]. 大气科学, 2019,43(4):875-894. |
[29] | [ Pang Yishu. Coupling wheels in the East Asian summer monsoon circulations and their impacts on precipitation anomalies in China[J]. Chinese Journal of Atmospheric Sciences, 2019,43(4):875-894. ] |
/
〈 |
|
〉 |